Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading

Hua Ying-Xin Liu Fu-Sheng Geng Hua-Yun Hao Long Yu Ji-Dong Tan Ye Li Jun

Citation:

Kinetics of iron α-εphase transition under thermodynamic path of multiple shock loading-unloading

Hua Ying-Xin, Liu Fu-Sheng, Geng Hua-Yun, Hao Long, Yu Ji-Dong, Tan Ye, Li Jun
PDF
HTML
Get Citation
  • The dynamics of iron under extreme conditions like high temperature and high pressure has been well studied for several decades. But, there have been not many reports about the phase transition kinetics coupled with complicated thermodynamic paths, especially loading-unloading-reloading path, which is closer to the real applications. A three-layer structure impactor with five stages performed in the front-surface experiment is made up to approach the special path. We choose epoxy to be the adhesive as it has low impedance and high strength. Tantalum, the standard material of high impedance which also has single wave structure, is selected for reloading process. The wave profile shows a 3-wave structure in the first unloading period and the inverse phase transition threshold is calculated to be about 11.3 GPa. This onset pressure of reverse phase transition is not consistent with Barker’s result, higher than his result (about 2.5 GPa). By comparing with recalculated result of Jensen’s data, we find that our result is consistent with theirs.In this work the inverse phase transition ends at about 10 GPa, the value from this way which is higher than Barker’s finding, even higher than his result of the threshold pressure of reverse phase transition. And at this state there remains 12%–15% of ε phase. So it cannot be seen as the completed reverse phase transformation. The phase transition onset pressure is 10–12 GPa on the reloading path and it is about 1–2 GPa lower than the first phase transition. By simulating the wave profile, the discrepancy of using different phase transformation characteristic time τ as 30 ns and 5 ns is analyzed. It can be seen that the phase transition rate of reloading is faster than that of the first loading process. These phenomena may be caused by the twins and the dislocations which are produced by the inverse phase transition. Also, as unloading time becomes longer, the mass fraction of ε phase becomes lesser and the onset pressure of α → ε phase transition becomes lower. This because with more ε phases transforming into α phase, more twins and dislocations will be produced in material. Therefore, it brings the lower onset pressure.
      Corresponding author: Li Jun, lijun102@caep.cn
    • Funds: Project supported by the Science Challenge Project,China (Grant Nos. TZ2016001), the National Key Laboratory of Shock Wave and Detonation Physics, China (Grant No. JCKYS2018212002), and the NSAF(Grant No.U1730248)
    [1]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp53−254, 39−240

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463Google Scholar

    [3]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669Google Scholar

    [5]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [6]

    Balchan A S, Drickamer H G 1961 Rev. Sci. Instrum. 32 308Google Scholar

    [7]

    Jamison J C, Lawson A W 1962 J. Appl. Phys. 33 776Google Scholar

    [8]

    Takahashi T, Bassett W A 1964 Science 145 483Google Scholar

    [9]

    Clenden R L, Drickamer H G 1964 J. Phys. Chem. Solids 25 865Google Scholar

    [10]

    Jensen B J, GrayⅢ G T, Hixson R S 2009 J. Appl. Phys. 105 103502Google Scholar

    [11]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911Google Scholar

    [12]

    Smith R F, Eggert J H, Swift D C, et al. 2013 J. Appl. Phys. 114 223507Google Scholar

    [13]

    施尚春, 陈攀森, 黄跃 1991 高压 5 205Google Scholar

    Shi S C, Chen P S, Huang Y 1991 Chin. J. High Pressure Phys. 5 205Google Scholar

    [14]

    Tan H, Weng J D, Wang X Proceedings of the 8th National Conference on Explosion Mechanics Ji’an, China, September 20−25, 2007 p75

    [15]

    谭华 2018 实验冲击波物理 (北京: 国防工业出版社) 第203−218页

    Tan H 2018 Experimental Shock Wave Physics (Vol. 1) (Beijing: National Defense Industry Press) pp3−18

    [16]

    Hayes D B W 1975 J. Appl. Phys. 46 3438Google Scholar

    [17]

    Boettger J C, Wallace D C 1997 1997 Phys. Rev. B 55 2840

    [18]

    种涛, 唐志平, 谭福利, 王桂吉, 赵剑衡 2018 高压 32 014102

    Chong T, Tang Z P, Tan F L, Wang G J, Zhao J H 2018 Chin. J. High Pressure Phys. 32 014102

    [19]

    Dougherty L M, GrayⅢ G T, Cerreta E K, McCabe R J, Field R D, Bingert J F 2009 Scr. Mater. 60 772Google Scholar

    [20]

    Wang S J, Sui M L, Chen Y T, Lu Q H, M E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086Google Scholar

    [21]

    唐志平 2008 冲击相变(北京: 科学出版社) 第87−106页

    Tang Z P 2008 Shock Phase Transiformation (Vol. 1) (Beijing: Higher Education Press) (in Chinese)

  • 图 1  多台阶三层组合飞片结构及台阶分布示意图

    Figure 1.  Schematic diagram of multistage triple-layer impactor.

    图 2  Fe的低压部分相图及热力学加卸载路径设计

    Figure 2.  The phase diagram of iron and the thermodynamic loading path.

    图 3  实验装置系统示意图

    Figure 3.  Schematic diagram of experimental set up.

    图 4  声速计算方法示意图(A点为碰撞时刻, B点为稀疏波到达时刻, C点为卸载过程中任意时刻)

    Figure 4.  Schematic diagram of sound velocity calculation(A is the impact moment, B is the rarefaction wave arrival time, C is arbitrary time of unloading process).

    图 5  典型飞片/窗口界面粒子速度剖面(A点为碰撞时刻, B点为稀疏波到达窗口界面, C点为弹塑性卸载拐折点, D点为逆相变起始点, E点为卸载过程终点, F点为二次加载起始点, G为相变临界点, H为再加载P2波到达时刻)

    Figure 5.  Particle velocity of impactor/window interface (A is the impact moment, B is the rarefaction wave arrival time, C is the elastoplastic unloading crutch point, D is the start point of reverse phase transition, E is the ending of unloading, F is the start point of reloading, G is the phase transition point of the reloading process, H is the reloading P2 wave arrival time).

    图 6  相组织及应力波示意图(字母标识与图5同义)

    Figure 6.  Schematic diagram of phase and strain wave(the letters on the time axis have the same meaning with Fig.5).

    图 7  (a) shot No.1和(b)shot No.2各台阶对应界面粒子速度历史(1—5分别表示台阶编号)

    Figure 7.  The interface particle velocity history of all stages in (a) shot No.1 and (b)shot No.2 (1–5 is the serial number of each stage).

    图 8  相变特征时间τ取30 ns的模拟结果(字母标识与图5同义)

    Figure 8.  Simulation of interface velocity with a characteristic time of 30 ns(the letters have the same meaning with Fig.5).

    图 9  实测再加载段速度剖面与数值模拟的比较(字母标识与图5同义)

    Figure 9.  Comparison of the measured particle velocity and simulation (the letters have the same meaning with Fig.5).

    图 10  二次相变压力与ε相质量分数关系

    Figure 10.  The relation between reloading phase transition pressure and mass fraction of ε phase.

    表 1  实验材料Hugoniot参数

    Table 1.  Hugoniot parameter of materials.

    材料$ {{\rho }}_{0}/{({\rm{g}} \cdot {\rm{cm}}}^{-3}) $$ {{C}}_{0} $/$ ({\rm{km}} \cdot {\rm{s}}^{-1}) $λ
    Ta16.653.431.19
    Epoxy1.192.731.49
    Fe样品7.863.931.58
    LiF窗口2.645.211.34
    DownLoad: CSV

    表 2  实验各部件名义尺寸

    Table 2.  Gauges of components.

    部件$ {{\rho }}_{0}/\left({{\rm{g}} \cdot {\rm{cm}}}^{-3}\right) $直径
    /mm
    厚度
    /mm
    对应Epoxy
    厚度/mm
    Ta 1号台阶16.655522.2
    Ta 2号台阶16.65152.51.7
    Ta 3号台阶16.65152.81.4
    Ta 4号台阶16.65153.21.0
    Ta 5号台阶16.65153.50.7
    Epoxy1.1955
    Fe样品7.86551.5
    LiF窗口2.645520
    DownLoad: CSV

    表 3  实验shot No.2测量及计算结果

    Table 3.  The data of experiment shot No.2.

    $ {W}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{u}}_{\mathrm{w},\mathrm{H}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{u}}_{\mathrm{m}}/(\mathrm{m}\cdot {\mathrm{s}}^{-1}) $$ {{P}}_{\mathrm{m}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {{p}}_{\mathrm{D}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {{p}}_{\mathrm{E}}/\mathrm{G}\mathrm{P}\mathrm{a} $$ {\Delta {t}}_{\mathrm{D}\mathrm{E}}/\text{μ}\mathrm{s} $
    Shot No.11475 ± 15986 ± 10489 ± 1017.0 ± 0.111.2 ± 0.410.0 ± 0.20.08
    Shot No.21521 ± 151015 ± 10506 ± 1017.6 ± 0.111.4 ± 0.410.0 ± 0.20.07
    DownLoad: CSV

    表 4  shot No.1和shot No.2各台阶对应卸载尾段残余ε相质量分数及二次加载相变压力

    Table 4.  The mass fraction of ε phase in the end of unloading process and reload phase transition pressure on each stage.

    Shot No.1 Shot No.2
    台阶编号ε相质量
    分数/%
    二次加载相
    变压力/GPa
    ε相质量
    分数/%
    二次加载相
    变压力/GPa
    55211.5 7712.0
    42710.93611.1
    32110.62610.8
    21610.42010.5
    11210.11510.2
    DownLoad: CSV
    Baidu
  • [1]

    Tonkov E Y, Ponyatovsky E G 2004 Phase Transformations of Elements Under High Pressure (Boca Raton: CRC Press) pp53−254, 39−240

    [2]

    Minshall S 1955 J. Appl. Phys. 26 463Google Scholar

    [3]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669Google Scholar

    [5]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [6]

    Balchan A S, Drickamer H G 1961 Rev. Sci. Instrum. 32 308Google Scholar

    [7]

    Jamison J C, Lawson A W 1962 J. Appl. Phys. 33 776Google Scholar

    [8]

    Takahashi T, Bassett W A 1964 Science 145 483Google Scholar

    [9]

    Clenden R L, Drickamer H G 1964 J. Phys. Chem. Solids 25 865Google Scholar

    [10]

    Jensen B J, GrayⅢ G T, Hixson R S 2009 J. Appl. Phys. 105 103502Google Scholar

    [11]

    Bastea M, Bastea S, Becker R 2009 Appl. Phys. Lett. 95 241911Google Scholar

    [12]

    Smith R F, Eggert J H, Swift D C, et al. 2013 J. Appl. Phys. 114 223507Google Scholar

    [13]

    施尚春, 陈攀森, 黄跃 1991 高压 5 205Google Scholar

    Shi S C, Chen P S, Huang Y 1991 Chin. J. High Pressure Phys. 5 205Google Scholar

    [14]

    Tan H, Weng J D, Wang X Proceedings of the 8th National Conference on Explosion Mechanics Ji’an, China, September 20−25, 2007 p75

    [15]

    谭华 2018 实验冲击波物理 (北京: 国防工业出版社) 第203−218页

    Tan H 2018 Experimental Shock Wave Physics (Vol. 1) (Beijing: National Defense Industry Press) pp3−18

    [16]

    Hayes D B W 1975 J. Appl. Phys. 46 3438Google Scholar

    [17]

    Boettger J C, Wallace D C 1997 1997 Phys. Rev. B 55 2840

    [18]

    种涛, 唐志平, 谭福利, 王桂吉, 赵剑衡 2018 高压 32 014102

    Chong T, Tang Z P, Tan F L, Wang G J, Zhao J H 2018 Chin. J. High Pressure Phys. 32 014102

    [19]

    Dougherty L M, GrayⅢ G T, Cerreta E K, McCabe R J, Field R D, Bingert J F 2009 Scr. Mater. 60 772Google Scholar

    [20]

    Wang S J, Sui M L, Chen Y T, Lu Q H, M E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086Google Scholar

    [21]

    唐志平 2008 冲击相变(北京: 科学出版社) 第87−106页

    Tang Z P 2008 Shock Phase Transiformation (Vol. 1) (Beijing: Higher Education Press) (in Chinese)

  • [1] Ma Tong, Xie Hong-Xian. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction. Acta Physica Sinica, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [2] Pan Hao, Wang Sheng-Tao, Wu Zi-Hui, Hu Xiao-Mian. Effect of twining on dynamic behaviors of beryllium materials under impact loading and unloading. Acta Physica Sinica, 2018, 67(16): 164601. doi: 10.7498/aps.67.20180451
    [3] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [4] Pan Hao, Wu Zi-Hui, Hu Xiao-Mian. Characteristic method to infer the high-pressure sound speed in a nonsymmetric impact and release experiment. Acta Physica Sinica, 2016, 65(11): 116201. doi: 10.7498/aps.65.116201
    [5] Yu Yu-Ying, Tan Ye, Dai Cheng-Da, Li Xue-Mei, Li Ying-Hua, Tan Hua. Sound velocities of vanadium under shock compression. Acta Physica Sinica, 2014, 63(2): 026202. doi: 10.7498/aps.63.026202
    [6] Wang Wen-Peng, Liu Fu-Sheng, Zhang Ning-Chao. Structural transformation of liquid water under shock compression condition. Acta Physica Sinica, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [7] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [8] Liang Lin-Yun, Lü Guang-Hong. Phase-field modeling of vacancy cluster evolution in Fe. Acta Physica Sinica, 2013, 62(18): 182801. doi: 10.7498/aps.62.182801
    [9] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [10] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [11] Zhang Shi-Lai, Liu Fu-Sheng, Peng Xiao-Juan, Zhang Ming-Jian, Li Yong-Hong, Ma Xiao-Juan, Xue Xue-Dong. Transformation kinetics of metal and experimental measurement at nanosecond order. Acta Physica Sinica, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [12] Shao Jian-Li, He An-Min, Duan Su-Qing, Wang Pei, Qin Cheng-Sen. Atomistic simulation of the bcc—hcp transition in iron driven by uniaxial strain. Acta Physica Sinica, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [13] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng, Liu Shao-Jun, Cui Xin-Lin, Chen Xiang-Rong. The mechanism of structure phase transition from α Fe to ε Fe under uniaxial strain: First-principles calculations. Acta Physica Sinica, 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [14] Liu Yao-Min, Liu Zhong-Liang, Huang Ling-Yan. Simulation of frost formation process on cold plate based on fractal theory combined with phase change dynamics. Acta Physica Sinica, 2010, 59(11): 7991-7997. doi: 10.7498/aps.59.7991
    [15] Lu Zhi-Peng, Zhu Wen-Jun, Liu Shao-Jun, Lu Tie-Cheng, Chen Xiang-Rong. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study. Acta Physica Sinica, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] Deng Xiao-Liang, Zhu Wen-Jun, Song Zhen-Fei, He Hong-Liang, Jing Fu-Qian. Microscopic mechanism of void coalescence under shock loading. Acta Physica Sinica, 2009, 58(7): 4772-4778. doi: 10.7498/aps.58.4772
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Study of nucleation of void-induced phase transformation under shock compression. Acta Physica Sinica, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [18] Chen Jun, Xu Yun, Chen Dong-Quan, Sun Jin-Shan. Multi-scale simulation of the dynamic behaviors of nano-void in shocked material. Acta Physica Sinica, 2008, 57(10): 6437-6443. doi: 10.7498/aps.57.6437
    [19] Deng Xiao-Liang, Zhu Wen-Jun, He Hong-Liang, Wu Deng-Xue, Jing Fu-Qian. Initial dynamic behavior of nano-void growth in single-crystal copper under shock loading along 〈111〉 direction. Acta Physica Sinica, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [20] Han Yi, Ban Chun-Yan, Ba Qi-Xian, Wang Shu-Han, Cui Jian-Zhong. Effect of magnetic field on the interfacial microstructure between molten aluminium and solid iron. Acta Physica Sinica, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
Metrics
  • Abstract views:  4228
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2021
  • Accepted Date:  08 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map