Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays

Hu Rui Fan Zhi-Qiang Zhang Zhen-Hua

Citation:

Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays

Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Graphene (GN), a monolayer two-dimensional (2D) system closely arranged into a benzene ring structure by C atoms, has so far aroused considerable research interest due to its novel electronic, magnetic, mechanical and thermal properties. But 2D GN is a semimetal with zero band gap, and the lowest conduction band touches the highest valence band at Fermi level, leading to the inability to achieve the off effect in the electronic device. Therefore, many researchers are searching the solutions. A simple and feasible method is to convert 2D GN into quasi-one-dimensional (1D) graphene nanoribbons, quantum-dot arrays (QDAs) and zero-dimensional (0D) quantum-dot by tailoring it along a specific single crystallographic direction. The QDAs, due to their structural diversity, have great potential applications in future nano-integrated circuit. In this work, first-principles method based on density functional theory is used to study the magneto-electronic and magnetic transport properties of four 1D quantum-dot arrays (1D QDAs) consisting of triangular graphene nanoflakes with different linking modes. The calculated binding energy suggests that these structures are very stable, and the arrays that are linked by the bottom-side are more stable than that only by the vertex. In particular, it is found that the electronic and magnetic features are not only related to the different magnetic states, but also depend on linking modes. For example, in the non-magnetism state, different QDAs can be a metal or a narrowed band-gap semiconductor. In the ferromagnetic state, different QDAs can be half-metal materials or bipolar magnetic semiconductors with different gaps, and have greatly different magnetic moments from 1.985 to 7.994B/unit cell, reaching a difference almost as large as four times. While in the antiferromagnetic state, all QDAs are semiconductors but with different gaps. These results imply that the linking modes play a crucial role in effectively tuning the electronic and magnetic features for nanostructures. The calculated atom-projected density of states indicates that the highest valence band and the lowest conduction band are determined by the edge C atoms. The half-metallic and bipolar magnetic semiconducting behaviors presented by 1D QDA are extremely important for developing magnetic devices, which is not found in the intrinsic graphene nanoribbons. And, we also investigate the magnetic device properties based on one kind of QDA, and the single or dual spin-filtering effect with the perfect (100%) spin polarization and a rectification ratio of about 104 can be predicted. Particularly, a giant magnetoresistance over 109% is found unambiguously, which is two orders of magnitude higher than the value predicted based on the zigzag graphene nanoribbons and five orders of magnitude higher than previously reported experimental values for the MgO tunnel junction. Our results thus provide strong evidence for the effectiveness of QDAs on the magneto-electronic properties.
      Corresponding author: Zhang Zhen-Hua, lgzzhang@sohu.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61371065,11674039) and Hunan Provincial Natural Science Foundation of China (Grant Nos.14JJ2076,2015JJ3002,2015JJ2009,2015JJ2013).
    [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [5]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [6]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [7]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [8]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [9]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [10]

    Kusakabe K, Maruyama M 2003 Phys. Rev. B 67 092406

    [11]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [12]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [13]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [14]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys. Sin. 64 196101 (in Chinese)[陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 64 196101]

    [15]

    Fernandez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [16]

    Wang W L, Meng S, Kairas E 2007 Nano Lett. 8 241

    [17]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [18]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [19]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [20]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [21]

    Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [22]

    Ezawa M 2010 Physica E 42 703

    [23]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [24]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. -Chim. Sin. 28 1701 (in Chinese)[张俊俊, 张振华, 郭超, 李杰, 邓小清 2012 物理化学学报 28 1701]

    [25]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese)[王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [27]

    Yuan P F, Tian W, Zeng Y C, Zhang Z H, Zhang J J 2014 Org. Electron. 15 3577

    [28]

    Wang D, Zhang Z, Zhu Z, Liang B 2014 Sci. Rep. 4 7587

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [34]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [36]

    Yu D, Lupton E M, Gao H J, Zhang C, Liu F 2008 Nano Res. 1 497

    [37]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [38]

    Prinz G A 1998 Science 282 1660

    [39]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [40]

    Munoz-Rojas F, Fernandez-Rossier J, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [41]

    Landauer R 1970 Philos. Mag. 21 863

    [42]

    Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

  • [1]

    Noveselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonosn S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    Weiss N O, Zhou H L, Liao L, Liu Y, Jiang S, Huang Y, Duan X F 2012 Adv. Mater. 24 5782

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Katsnelson M I, Novoselov K S 2007 Solid State Commun. 14 3

    [5]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [6]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602

    [7]

    Lee C, Wei X D, Kysar J W, Hone J 2008 Science 321 385

    [8]

    Hu J N, Ruan X L, Chen Y P 2009 Nano Lett. 9 2730

    [9]

    Evans W J, Hu L, Keblinski P 2010 Appl. Phys. Lett. 96 203112

    [10]

    Kusakabe K, Maruyama M 2003 Phys. Rev. B 67 092406

    [11]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [12]

    Pisani L, Chan J A, Montanari B, Harrison N M 2007 Phys. Rev. B 75 064418

    [13]

    Huang B, Liu F, Wu J, Gu B L, Duan W H 2008 Phys. Rev. B 77 153411

    [14]

    Chen Y, Hu H F, Wang X W, Zhang Z J, Cheng C P 2015 Acta Phys. Sin. 64 196101 (in Chinese)[陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍 2015 64 196101]

    [15]

    Fernandez-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [16]

    Wang W L, Meng S, Kairas E 2007 Nano Lett. 8 241

    [17]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [18]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [19]

    Son Y W, Cohen M L, Louie S G 2006 Phys. Rev. Lett. 97 216803

    [20]

    Hod O, Barone V, Scuseria G E 2008 Phys. Rev. B 77 035411

    [21]

    Wang W L, Yazyev O V, Meng S, Kaxiras E 2009 Phys. Rev. Lett. 102 157201

    [22]

    Ezawa M 2010 Physica E 42 703

    [23]

    Li J, Zhang Z H, Zhang J J, Deng X Q 2012 Org. Electron. 13 2257

    [24]

    Zhang J J, Zhang Z H, Guo C, Li J, Deng X Q 2012 Acta Phys. -Chim. Sin. 28 1701 (in Chinese)[张俊俊, 张振华, 郭超, 李杰, 邓小清 2012 物理化学学报 28 1701]

    [25]

    Lee G, Cho K 2009 Phys. Rev. B 79 165440

    [26]

    Wang D, Zhang Z H, Deng X Q, Fan Z Q 2013 Acta Phys. Sin. 62 207101 (in Chinese)[王鼎, 张振华, 邓小清, 范志强 2013 62 207101]

    [27]

    Yuan P F, Tian W, Zeng Y C, Zhang Z H, Zhang J J 2014 Org. Electron. 15 3577

    [28]

    Wang D, Zhang Z, Zhu Z, Liang B 2014 Sci. Rep. 4 7587

    [29]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [30]

    Brandbyge M, Mozos J L, Ordejon P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401

    [31]

    Zeng J, Chen K Q, He J, Zhang X J, Sun C Q 2011 J. Phys. Chem. C 115 25072

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S 1996 Phys. Rev. B 54 17954

    [34]

    Fujita M, Wakabayashi K, Nakada K, Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920

    [35]

    Yan Q M, Huang B, Yu J, Zheng F W, Zang J, Wu J, Gu B L, Liu F, Duan W H 2007 Nano Lett. 7 1469

    [36]

    Yu D, Lupton E M, Gao H J, Zhang C, Liu F 2008 Nano Res. 1 497

    [37]

    de Groot R A, Mueller F M, van Engen P G, Buschow K H J 1983 Phys. Rev. Lett. 50 2024

    [38]

    Prinz G A 1998 Science 282 1660

    [39]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [40]

    Munoz-Rojas F, Fernandez-Rossier J, Palacios J J 2009 Phys. Rev. Lett. 102 136810

    [41]

    Landauer R 1970 Philos. Mag. 21 863

    [42]

    Parkin S S, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, Yang S H 2004 Nat. Mater. 3 862

  • [1] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] Liu Zhi-Xin, Dang Zhi-Bo, Fang Zhe-Yu. Electron beam chiral diffraction radiation in isosceles right triangle light-well. Acta Physica Sinica, 2022, 71(24): 247801. doi: 10.7498/aps.71.20221417
    [3] Qiang Jin, He Kai-Zhou, Liu Dong-Ni, Lu Qi-Hai, Han Gen-Liang, Song Yu-Zhe, Wang Xiang-Qian. Study of magnetic vortex spin wave mode in triangular structures. Acta Physica Sinica, 2022, 71(19): 194703. doi: 10.7498/aps.71.20221128
    [4] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [5] Li Ye-Hua, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties of InSe nanoribbons terminated with non-metallic atoms and its strain modulation. Acta Physica Sinica, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [6] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [7] Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha. Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field. Acta Physica Sinica, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [8] Liu Juan, Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons. Acta Physica Sinica, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [9] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [10] Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping. Effect of electronic correlations on magnetotransport through a parallel double quantum dot. Acta Physica Sinica, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [11] Liu Zhi-Gang, Liu Wei-Long, Zhao Hai-Jun. Quantum calculations for photodetachment cross sections of H- in an equilateral triangle cavity. Acta Physica Sinica, 2015, 64(16): 163202. doi: 10.7498/aps.64.163202
    [12] Tian Zi-Jian, Li Wei-Xiang, Fan Jing. Performance analysis of double incidence derivative metamaterial based on double-triangular structure. Acta Physica Sinica, 2015, 64(3): 034102. doi: 10.7498/aps.64.034102
    [13] Tian Wen, Yuan Peng-Fei, Yu Zhuo-Liang, Tao Bin-Kai, Hou Sen-Yao, Ye Cong, Zhang Zhen-Hua. Electronic properties of doped hexagonal graphene. Acta Physica Sinica, 2015, 64(4): 046102. doi: 10.7498/aps.64.046102
    [14] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [15] Zou Cheng-Yi, Wu Shao-Quan, Zhao Guo-Ping. Mageto-transport properties of serial double quantum dots in the spin blockade regime. Acta Physica Sinica, 2013, 62(1): 017201. doi: 10.7498/aps.62.017201
    [16] Liu Xiang-Long, Zhu Man-Zuo, Lu Lu. Two-dimensional quantum spectra and classical orbits of isosceles- right triangular billiards. Acta Physica Sinica, 2012, 61(22): 220301. doi: 10.7498/aps.61.220301
    [17] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [18] Lin Feng, Li Zuan-Yi, Wang Shan-Ying. Mechanical and electronic properties of TiO2 nanotubes. Acta Physica Sinica, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [19] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [20] Wang Xian-Jie, Sui Yu, Qian Zheng-Nan, Liu Zhi-Guo, Miao Ji-Peng, Huang Xi-Qiang, Lü Zhe, Zhu Rui-Bin, Cheng Jin-Guang, Su Wen-Hui. Influence of doping Al at Fe site on the magnetic structure and magnetotransport properties of Sr2FeMoO6. Acta Physica Sinica, 2006, 55(2): 849-853. doi: 10.7498/aps.55.849
Metrics
  • Abstract views:  6215
  • PDF Downloads:  283
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2017
  • Accepted Date:  21 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map