-
Horizontal disk, sphere, and spherical crown are a very important type of scatter in geophysics research. In the marine environment, a disk-like scatter can be used to describe several resistive targets, e.g., basaltic sills and stratigraphic hydrocarbon reservoirs while spherical crown can be used to approximately depict the topography of interface for basement rock. This type of scatter has characteristics of axisymmetrical distribution of the conductivity. If some approaches can be established to efficiently simulate the marine controlled source electromagnetic (MCSEM) response to this scatter, it will be meaningful to investigate the nature of MCSEM responses in complex formation and to build appropriate method of processing and explaining MCSEM data. In this paper, the resistive scatters are approximated by one or several horizontal concentric disks with different radii and thickness values, based on the axially symmetrical spatial distribution of conductivity. Then, a combination of these concentric disks with air, sea water and surrounding beds will construct a horizontally stratified inhomogeneous formation with common axis-center, whose spatial distribution of conductivity is layered in the vertical direction and axisymmetric in the horizontal direction. Based on the approximations mentioned above, the computation of MCSEM response excited by horizontal electrical dipole (HED) located at the z-axis is entirely transformed into two axially symmetrical problems for the Fourier harmonic components of the electromagnetic (EM) fields. The differential operators about the horizontal magnetic components and transformation of horizontal electrical components and other EM components from horizontal magnetic components are derived. Then, the numerical mode matching approach is extended to the simulation of the EM field and three-dimensional (3D) MCSEM responses excited by the HED in the formation. The procedure for solving the EM field is presented. The semi-analytic solution of EM field in the whole space is obtained to efficiently and numerically model MCSEM response in the complex formation. Finally, the efficiency and accuracy of the present method are demonstrated numerically. The characteristics of 3D MCSEM responses in three different cases are further investigated.
-
Keywords:
- marine controlled-source electromagnetic method /
- axisymmetric scatter /
- numerical mode matching approach /
- semi-analytic solution
[1] Edwards N 2005 Surv. Geophys. 26 675
[2] Constable S 2010 Geophysics 75 75A67
[3] Yuan J, Edwards N 2000 Geophys. Res. Lett. 27 2397
[4] Weiss C J, Constable S 2006 Geophysics 71 G321
[5] Constable S C, Weiss C J 2006 Geophysics 71 G43
[6] Hoversten G M, Newman G A, Geier A, Flanagan G 2006 Geophysics 71 G239
[7] Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese)[汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]
[8] Li Y G, Dai S K 2011 Geophys. J. Int. 185 622
[9] Xu Z F, Wu X P 2010 Chinese J. Geophys. 53 1931 (in Chinese)[徐志锋, 吴小平 2010 地球 53 1931]
[10] Shen J S 2003 Chin. J. Geophys. 46 280 (in Chinese)[沈金松 2003 地球 46 280]
[11] Streich R 2009 Geophysics 74 F95
[12] Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese)[周建美, 张烨, 汪宏年, 杨守文, 殷长春 2014 63 159101]
[13] Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 58 1608]
[14] Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848]
[15] Kong F N, Johnstad S E, Rösten T, Westerdahl H 2008 Geophysics 73 F9
[16] Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383
[17] Wang H N, Tao H G, Yang S W 2008 Chin. J. Geophys. 51 1591
[18] Liu Q H, Chew W C 1992 Radio Sci. 27 569
[19] Wang H N 2011 IEEE Trans. Geosci. Remote Sens. 49 4483
[20] Wang H N, So P M, Yang S W, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote Sens. 46 1134
[21] Zhu T Z, Yang S W, Bai Y, Chen T, Wang H N 2017 Chin. J. Geophys. 60 1221 (in Chinese)[朱天竹, 杨守文, 白彦, 陈涛, 汪宏年 2017 地球 60 1221]
[22] Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:van Nostrand Reinhold)
-
[1] Edwards N 2005 Surv. Geophys. 26 675
[2] Constable S 2010 Geophysics 75 75A67
[3] Yuan J, Edwards N 2000 Geophys. Res. Lett. 27 2397
[4] Weiss C J, Constable S 2006 Geophysics 71 G321
[5] Constable S C, Weiss C J 2006 Geophysics 71 G43
[6] Hoversten G M, Newman G A, Geier A, Flanagan G 2006 Geophysics 71 G239
[7] Wang J X, Wang H N, Zhou J M, Yang S W, Liu X J, Yin C C 2013 Acta Phys. Sin. 62 224101 (in Chinese)[汪建勋, 汪宏年, 周建美, 杨守文, 刘晓军, 殷长春 2013 62 224101]
[8] Li Y G, Dai S K 2011 Geophys. J. Int. 185 622
[9] Xu Z F, Wu X P 2010 Chinese J. Geophys. 53 1931 (in Chinese)[徐志锋, 吴小平 2010 地球 53 1931]
[10] Shen J S 2003 Chin. J. Geophys. 46 280 (in Chinese)[沈金松 2003 地球 46 280]
[11] Streich R 2009 Geophysics 74 F95
[12] Zhou J M, Zhang Y, Wang H N, Yang S W, Yin C C 2014 Acta Phys. Sin. 63 159101 (in Chinese)[周建美, 张烨, 汪宏年, 杨守文, 殷长春 2014 63 159101]
[13] Chen G B, Wang H N, Yao J J, Han Z Y, Yang S W 2009 Acta Phys. Sin. 58 1608 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜, 杨守文 2009 58 1608]
[14] Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848 (in Chinese)[陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 58 3848]
[15] Kong F N, Johnstad S E, Rösten T, Westerdahl H 2008 Geophysics 73 F9
[16] Wang H N, Tao H G, Yao J J, Zhang Y 2012 IEEE Trans. Geosci. Remote Sens. 50 3383
[17] Wang H N, Tao H G, Yang S W 2008 Chin. J. Geophys. 51 1591
[18] Liu Q H, Chew W C 1992 Radio Sci. 27 569
[19] Wang H N 2011 IEEE Trans. Geosci. Remote Sens. 49 4483
[20] Wang H N, So P M, Yang S W, Hoefer W J R, Du H L 2008 IEEE Trans. Geosci. Remote Sens. 46 1134
[21] Zhu T Z, Yang S W, Bai Y, Chen T, Wang H N 2017 Chin. J. Geophys. 60 1221 (in Chinese)[朱天竹, 杨守文, 白彦, 陈涛, 汪宏年 2017 地球 60 1221]
[22] Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:van Nostrand Reinhold)
Catalog
Metrics
- Abstract views: 5514
- PDF Downloads: 145
- Cited By: 0