Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and characteristics of ZnO nanoflowers

Wu Xiao-Ping Liu Jin-Yang Lin Li-Mei Zheng Wei-Feng Qu Yan Lai Fa-Chun

Citation:

Preparation and characteristics of ZnO nanoflowers

Wu Xiao-Ping, Liu Jin-Yang, Lin Li-Mei, Zheng Wei-Feng, Qu Yan, Lai Fa-Chun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Unlike the general substrates such as SiO2, ITO, and AZO, the metal foil used as a substrate is rarely studied in application in the substrate, however, it has lots of advantages including cheapness, good conductivity and excellent scalability. In this paper, an acanthosphere-like structure named ZnO nanoflowers is successfully synthesized on Cu foil by using chemical vapor deposition method. The gas flows with oxygen-argon ratios ranging from 1 : 150, 1 : 200, 1 : 250 to 1 : 400, which impacted on Cu foil, and the property of the ZnO nanoflowers are carefully studied. The SEM images shown that there are lots of ZnO nanorods grown on the sphere cores, and look like flowers. The ZnO nanoflowers contains uniformly sized ZnO nanorods and morphology with best flower structure when the oxygen/argon gas flow ratio is 1 : 250. Furthermore, the length-diameter ratio of the ZnO nanorods on the ZnO nanoflowers decreases as the oxygen-argon gas flow ratio decreases. The ZnO is of hexagonal wurtzite structure indicated by XRD pattern and there exist no other diffraction peaks existence except those from the Cu foil. In addition, the photoluminescence of ZnO nanoflower changes from a wave packet into a broad peak in the visible region when the oxygen-argon gas flow ratio between decreases. Further study of the photoluminescence by fitting the peaks in visible region with gaussian function indicates that the photoluminescence relating to the oxygen vacancy defects increases, but that relating to the zinc vacancy defects decreases. Therefore, the white light emitting device may be constructed based on the ZnO nanoflowers studied shown above. Finally, a possible model of the ZnO nanoflowers grown on Cu foil is proposed based on the experimental results.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074041, 11374052) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2012J01256, 2013J01174).
    [1]

    Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601

    [2]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [3]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [4]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [5]

    Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342

    [6]

    Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120

    [7]

    Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666

    [8]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [9]

    Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93

    [10]

    Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]

    [11]

    Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]

    [12]

    Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34

    [13]

    Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558

    [14]

    Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132

    [15]

    Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534

    [16]

    Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112

    [17]

    Huang Y, Yuan G L 2012 Mater. Lett. 82 85

    [18]

    Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105

    [19]

    Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79

    [20]

    Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083

    [21]

    Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224

    [22]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [23]

    Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877

    [24]

    Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906

    [25]

    Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203

    [26]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]

  • [1]

    Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601

    [2]

    Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101

    [3]

    Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504

    [4]

    Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678

    [5]

    Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342

    [6]

    Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120

    [7]

    Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666

    [8]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [9]

    Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93

    [10]

    Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]

    [11]

    Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]

    [12]

    Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34

    [13]

    Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558

    [14]

    Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132

    [15]

    Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534

    [16]

    Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112

    [17]

    Huang Y, Yuan G L 2012 Mater. Lett. 82 85

    [18]

    Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105

    [19]

    Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79

    [20]

    Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083

    [21]

    Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224

    [22]

    Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561

    [23]

    Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877

    [24]

    Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906

    [25]

    Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203

    [26]

    Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]

  • [1] Ma Teng-Yu, Li Wan-Jun, He Xian-Wang, Hu Hui, Huang Li-Juan, Zhang Hong, Xiong Yuan-Qiang, Li Hong-Lin, Ye Li-Juan, Kong Chun-Yang. Size Regulation and Photoluminescence Properties of β-Ga2O3 Nanomaterials. Acta Physica Sinica, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [2] Wang Qiang, Yang Li-Xue, Liu Bei-Yun, Yan Yin-Zhou, Chen Fei, Jiang Yi-Jian. Thermal regulation mechanism of photoluminescence in intrinsic acceptor-rich ZnO microtube. Acta Physica Sinica, 2020, 69(19): 197701. doi: 10.7498/aps.69.20200655
    [3] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] Huang Jing-Wen, Luo Li-Qiong, Jin Bo, Chu Shi-Jin, Peng Ru-Fang. Synthesis and photoluminescence property of hexangular star MoSe2 bilayer. Acta Physica Sinica, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] Zhou Xiao-Hong, Yang Qing, Zou Jun-Tao, Liang Shu-Hua. Effects of growth conditions on the microstructures and photoluminescence properties of Ga-doped ZnO films. Acta Physica Sinica, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [6] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [7] Wu Yan-Nan, Xu Ming, Wu Ding-Cai, Dong Cheng-Jun, Zhang Pei-Pei, Ji Hong-Xuan, He Lin. Effects of Co and/or Sn doping on crystal structures and optical properties of ZnO thin films. Acta Physica Sinica, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [8] Fang He, Wang Shun-Li, Li Li-Qun, Li Pei-Gang, Liu Ai-Ping, Tang Wei-Hua. Synthesis and photoluminescence of ZnO and Zn/ZnOnanoparticles prepared by liquid-phase pulsed laser ablation. Acta Physica Sinica, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [9] Gao Li, Zhang Jian-Min. Photoluminescence of diluted Mg doped ZnO thin films and band-gap change mechanisms. Acta Physica Sinica, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [10] Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong. Preparation of SiOx nanowires in different atmosphere, their morphology, PL and FTIR properties. Acta Physica Sinica, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [11] Wu Ding-Cai, Hu Zhi-Gang, Duan Man-Yi, Xu Lu-Xiang, Liu Fang-Shu, Dong Cheng-Jun, Wu Yan-Nan, Ji Hong-Xuan, Xu Ming. Synthesis and photoluminescence of (Co, Cu)-doped ZnO thin films. Acta Physica Sinica, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [12] Yu Wei, Li Ya-Chao, Ding Wen-Ge, Zhang Jiang-Yong, Yang Yan-Bin, Fu Guang-Sheng. Bonding configurations and photoluminescence of amorphous Si nanoparticles in SiNx films. Acta Physica Sinica, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [13] Ma Hai-Lin, Su Qing, Lan Wei, Liu Xue-Qin. Influence of oxygen pressure on the structure and photoluminescence of β-Ga2O3 nano-material prepared by thermal evaporation. Acta Physica Sinica, 2008, 57(11): 7322-7326. doi: 10.7498/aps.57.7322
    [14] Tang Bin, Deng Hong, Shui Zheng-Wei, Wei Min, Chen Jin-Ju, Hao Xin. Room-temperature optical properties of Al-doped ZnO nanowires array. Acta Physica Sinica, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [15] Wang Ying-Long, Lu Li-Fang, Yan Chang-Yu, Chu Li-Zhi, Zhou Yang, Fu Guang-Sheng, Peng Ying-Cai. The laser ablated deposition of Si nanocrystalline film with narrow photoluminescence peak. Acta Physica Sinica, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [16] Xu Da-Yin, Liu Yan-Ping, He Zhi-Wei, Fang Ze-Bo, Liu Xue-Qin, Wang Yin-Yue. The behavior of photoluminescence from SiC:Tb films deposited on porous silicon substrate. Acta Physica Sinica, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [17] Huang Kai, Wang Si-Hui, Shi Yi, Qin Guo-Yi, Zhang Rong, Zheng You-Dou. Effect of inner electric field on the photoluminescence spectrum of nanosilicon. Acta Physica Sinica, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] Li Huo-Quan, Ning Zhao-Yuan, Cheng Shan-Hua, Jiang Mei-Fu. Photoluminescence centers and shift of ZnO films deposited by rf magnetron sputtering. Acta Physica Sinica, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [19] Zhang Xi-Tian, Xiao Zhi-Yan, Zhang Wei-Li, Gao Hong, Wang Yu-Xi, Liu Yi-Chun, Zhang Ji-Ying, Xu Wu. A study on photoluminescence characterization of high-quality nanocrystalline ZnO thin films. Acta Physica Sinica, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
    [20] MA SHU-YI, QIN GUO-GANG, YOU LI-PING, WANG YIN-YUE. COMPARATIVE STUDY ON PHOTOLUMINESCENCE FROM Si-CONTAINING SILICON OXIDE FILMS AND Ge-CONTAINING SILICON OXIDE FILMS. Acta Physica Sinica, 2001, 50(8): 1580-1584. doi: 10.7498/aps.50.1580
Metrics
  • Abstract views:  8252
  • PDF Downloads:  250
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2015
  • Accepted Date:  14 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map