-
利用化学气相沉积法, 在铜箔上成功制备出形似自然界中刺球花的ZnO纳米花结构. 实验进一步研究了氧气和氩气流量比例分别为1:150, 1:200, 1:250和1:400时对ZnO纳米花结构和性能的影响. 结果表明, ZnO纳米花上的ZnO纳米棒的长径比随氧气氛的减少而减小; 在氧气和氩气流量比例为1:250时制备出的ZnO纳米花尺寸均匀、形貌均一、花型结构最完美. ZnO 纳米花的室温光致发光谱表明, 随着氧气氛的减少, 可见区域的发光从一个波包变成一个宽峰, 且与锌空位相关的缺陷发光峰在减弱, 与氧空位相关的缺陷发光峰在增强. 基于实验结果, 提出了一种在铜箔上制备ZnO纳米花结构的生长模型.Unlike the general substrates such as SiO2, ITO, and AZO, the metal foil used as a substrate is rarely studied in application in the substrate, however, it has lots of advantages including cheapness, good conductivity and excellent scalability. In this paper, an acanthosphere-like structure named ZnO nanoflowers is successfully synthesized on Cu foil by using chemical vapor deposition method. The gas flows with oxygen-argon ratios ranging from 1 : 150, 1 : 200, 1 : 250 to 1 : 400, which impacted on Cu foil, and the property of the ZnO nanoflowers are carefully studied. The SEM images shown that there are lots of ZnO nanorods grown on the sphere cores, and look like flowers. The ZnO nanoflowers contains uniformly sized ZnO nanorods and morphology with best flower structure when the oxygen/argon gas flow ratio is 1 : 250. Furthermore, the length-diameter ratio of the ZnO nanorods on the ZnO nanoflowers decreases as the oxygen-argon gas flow ratio decreases. The ZnO is of hexagonal wurtzite structure indicated by XRD pattern and there exist no other diffraction peaks existence except those from the Cu foil. In addition, the photoluminescence of ZnO nanoflower changes from a wave packet into a broad peak in the visible region when the oxygen-argon gas flow ratio between decreases. Further study of the photoluminescence by fitting the peaks in visible region with gaussian function indicates that the photoluminescence relating to the oxygen vacancy defects increases, but that relating to the zinc vacancy defects decreases. Therefore, the white light emitting device may be constructed based on the ZnO nanoflowers studied shown above. Finally, a possible model of the ZnO nanoflowers grown on Cu foil is proposed based on the experimental results.
-
Keywords:
- ZnO nanoflowers /
- Cu foil /
- chemical vapor deposition /
- photoluminescence
[1] Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601
[2] Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101
[3] Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504
[4] Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678
[5] Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342
[6] Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120
[7] Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666
[8] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[9] Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93
[10] Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]
[11] Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]
[12] Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34
[13] Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558
[14] Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132
[15] Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534
[16] Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112
[17] Huang Y, Yuan G L 2012 Mater. Lett. 82 85
[18] Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105
[19] Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79
[20] Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083
[21] Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224
[22] Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561
[23] Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877
[24] Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906
[25] Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203
[26] Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]
-
[1] Biroju R K, Tilak N, Rajender G, Dhara S, Giri P K 2015 Nanotechnology 26 145601
[2] Yang C, Wang X P, Wang L J, Pan X F, Li S K, Jing L W 2013 Chin. Phys. B 22 088101
[3] Jabeen M, Iqbal M A, Kumar R V, Ahmed M, Javed M T 2014 Chin. Phys. B 23 018504
[4] Feng Q J, Liang H W, Mei Y Y, Liu J Y, Ling C C, Tao P C, Pan D Z, Yang Y Q 2015 J. Mater. Chem. C 3 4678
[5] Hussain S, Cao C B, Nabi G, Khan W S, Usman Z, Mahmood T 2011 Electrochim. Acta 56 8342
[6] Chien F S S, Wang C R, Chan Y L, Lin H L, Chen M H, Wu R J 2010 Sensor. Actuat. B: Chem 144 120
[7] Shao C J, Chang Y Q, Long Y 2014 Sensor. Actuat. B: Chem. 204 666
[8] Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947
[9] Rosales A, Castaneda-Guzman R, de Ita A, Sanchez-Ake C, Perez-Ruiz S J 2015 Mat. Sci. Semicon. Proc. 34 93
[10] Chen S J, Zheng W F, Lin S Z, Qu Y, Lai F C 2013 J. Optoelectron. Laser 24 1953 (in Chinese) [陈速娟, 郑卫峰, 林算治, 瞿燕, 赖发春 2013 光电子·激光 24 1953]
[11] Zhang Y 2010 One-Dimensional ZnO Nanometer Materials (Beijing: Science Press) pp72-132 (in Chinese) [张跃 2010 一维氧化锌纳米材料 (北京: 科学出版社) 第72–132页]
[12] Zhuo R F, Wang Y N, Yan D, Li S K, Liu Y, Wang F Y 2014 Mater. Lett. 117 34
[13] Dhanabalan S C, Garcia J P, Calestani D, Pattini F, Bissoli F, Villani M, Rampino S, Zappettini A 2014 Cryst. Res. Technol. 49 558
[14] Kwon B J, Lee K M, Shin H Y, Kim J, Liu J, Yoon S, Lee S, Ahn Y H, Park J Y 2012 Mater. Sci. Eng. B: Adv. 177 132
[15] Behera B, Chandra S 2015 J. Nanosci. Nanotech. 15 4534
[16] Dugaiczyk L, Ngo-Duc T T, Gacusan J, Singh K, Yang J, Santhanam S, Han J W, Koehne J E, Kobayashi N P, Meyyappan M, Oye M M 2013 Chem. Phys. Lett. 575 112
[17] Huang Y, Yuan G L 2012 Mater. Lett. 82 85
[18] Ngo-Duc T T, Gacusan J, Kobayashi N P, Sanghadasa M, Meyyappan M, Oye M M 2013 Appl. Phys. Lett. 102 083105
[19] Zhuang B P, Lai F C, Lin L M, Lin M B, Qu Y, Huang Z G 2010 Chin. J. Chem. Phys. 23 79
[20] Ho S T, Chen K C, Chen H A, Lin H Y, Cheng C Y, Lin H N 2007 Chem. Mater. 19 4083
[21] Kayaci F, Vempati S, Donmez I, Biyikli N, Uyar T 2014 Nanoscale 6 10224
[22] Zeng H B, Duan G T, Li Y, Yang S K, Xu X X, Cai W P 2010 Adv. Funct. Mater. 20 561
[23] Ghosh P, Sharma A K 2014 Appl. Phys. A: Mater. 116 1877
[24] Wang M S, Zhou Y J, Zhang Y P, Kim E J, Hahn S H, Seong S G 2012 Appl. Phys. Lett. 100 101906
[25] Huang H H, Wang H N, Li B R, Mo X M, Long H, Li Y, Zhang H, Carroll D L, Fang G J 2013 Nanotechnology 24 315203
[26] Xie L L, Chen S Y, Liu F J, Zhang J M, Lin Y B, Huang Z G 2014 Acta Phys. Sin. 63 077102 (in Chinese) [谢玲玲, 陈水源, 刘凤金, 张建敏, 林应斌, 黄志高 2014 63 077102]
计量
- 文章访问数: 8249
- PDF下载量: 249
- 被引次数: 0