Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Traveling wave solutions of the cylindrical nonlinear Maxwell's equations

Hu Liang Luo Mao-Kang

Citation:

Traveling wave solutions of the cylindrical nonlinear Maxwell's equations

Hu Liang, Luo Mao-Kang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Study on propagation of cylindrical electromagnetic waves in various inhomogeneous and nonlinear media is of fundamental importance, which can be described by the cylindrical nonlinear Maxwell's equations. In recent years, finding exact solutions for these equations has emerged as a popular research topic. The exact solutions play an irreplaceable role in understanding and predicting physical phenomena, and developing numerical calculation methods, and so on. However, due to the extreme complexity of nonlinear partial differential equations, exact solutions of the cylindrical Maxwell's equations were only able to be obtained in a nonlinear and nondispersive medium whose dielectric function is an exponential function in previous researches. Actually, there is no general method at present which can exactly solve arbitrary cylindrical nonlinear Maxwell's equations. Therefore, finding physically admissible solutions meeting certain particular condition for the cylindrical nonlinear Maxwell's equations might be feasible. In this paper, we discuss the traveling wave solutions which are very important in electromagnetic theory, especially in solitary wave theory. To our knowledge, research on obtaining traveling wave solutions of the cylindrical nonlinear Maxwell's equations is still lacking. The main conclusions in this paper are listed as follows. Firstly, we introduce the cylindrical nonlinear Maxwell's equations mentioned in some previous publications, which can describe cylindrical electromagnetic waves propagation in inhomogeneous nonlinear and nondispersive media. In this paper, we focus on the nondispersive media with arbitrary nonlinearity and power-law inhomogeneity. Secondly, we point out that the electric field component E of the model has no plane traveling wave solutions E=g(r-kt), after theoretical analysis and study. Then generalized traveling wave solutions in form of E=g(lnr-kt) for the electric field component are obtained by finding correct variable substitution and solving second-order nonlinear ordinary differential equation.Finally, we provide two examples to show the physical meanings of our generalized traveling wave solutions. We find that the transmitting speeds of vibrations vary with different points of the electric field. Actually, the transmitting speed of the vibration of a certain point closer to the cylinder center is lower. As a result, we observed a physical phenomenon similar to that of self-steepening. Our work can be used to analyze the electromagnetic properties of ferroelectric materials and new materials. Theoretically, it can also provide an approach to studying the cylindrical nonlinear Maxwell's equations.
      Corresponding author: Luo Mao-Kang, makaluo@scu.edu.cn
    [1]

    Ye P X 2007 Nonlinear Optical Physics (Vol. 1) (Beijing:Peking University Press) pp17-18 (in Chinese)[叶佩弦 2007 非线性光学物理 (北京:北京大学出版社) 第17-18页]

    [2]

    Yao B, Zheng Q H, Peng J H, Zhong R N, Xiang T, Xu W S 2011 Chin. Phys. Lett. 28 118401

    [3]

    Zhang M, Li L S, Zheng N, Shi Q F 2013 Chin. Phys. Lett. 30 077802

    [4]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:Van Nostrand Reinhold) p161

    [5]

    Ertrk V B, Rojas R G 2003 IEEE Trans. Antenn. Propag. 51 739

    [6]

    Petrov E Y, Kudrin A V 2010 JETP 110 537

    [7]

    Kudrin A V, Petrov E Y 2010 JETP 110 537

    [8]

    Xiong H, Si L G, Huang P, Yang X 2010 Phys. Rev. E 82 057602

    [9]

    Xiong H, Si L G, Ding C, L X Y, Yang X, Wu Y 2011 Phys. Rev. A 84 043841

    [10]

    Xiong H, Si L G, Ding C, Yang X, Wu Y 2011 Phys.Rev. A 84 043841

    [11]

    Xiong H, Si L G, Guo J F, L X Y, Yang X 2014 Chin. Phys. B 23 060304

    [12]

    Xiong H, Si L G, Ding C, Yang X, Wu Y 2012 Phys.Rev. E 85 016606

    [13]

    Chen S Y, Li T, Xie J B, Xie H, Zhou P, Tian Y F,Xiong H, Si L G 2013 Phys. Rev. E 88 035202

    [14]

    Ranjbar M, Bahari A 2016 Opt. Commun. 375 19

    [15]

    Zhang S Y, Ma X R, Zhang S G, Chen L, Wang X Y,Mu K L, Wang S 2014 Chin. Phys. B 23 060304

    [16]

    Zhang S Y, Ma X R, Zhang S G, Chen L, Wang X Y,Mu K L, Wang S 2014 Chin. Phys. B 23 060304

    [17]

    Zhang C Q, Ruan C J, Zhao D, Wang S Z, Yang X D 2014 Chin. Phys. B 23 088401

    [18]

    Liu L X, Shao C G 2012 Chin. Phys. Lett. 29 111401

    [19]

    Es'kin V A, Kudrin A V, Petrov E Y 2001 Nature 414 716

    [20]

    Xiong H, Si L G, Yang X X, Wu Y 2015 Sci. Reports 5 11071

    [21]

    Grenfell B T, Bjornstad O N, Kappey J 2001 Nature 414 716

    [22]

    Shi L F, Zhu M, Zhou X C, Wang W G, Mo J Q 2008 Phys. Lett. A 372 417

    [23]

    Xu Y H, Han X L, Shi L F, Mo J Q 2014 Acta Phys.Sin. 63 090204 (in Chinese) [许永红, 韩祥临, 石兰芳, 莫嘉琪2014 63 090204]

    [24]

    Harko T, Mak M K 2015 J. Math. Phys. 56 111501

    [25]

    Sardar A, Husnine S M, Rizvi S T R, Younis M, Ali K 2015 Nonlinear Dynam. 82 1317

    [26]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [27]

    Shu Y Q 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[舒雅琴 2011 博士学位论文 (兰州:兰州大学)]

    [28]

    Petrov E Y, Kudrin A V 2012 Phys. Rev. E 85 055202

    [29]

    Silva A, Monticone F, Castaldi G, Galdi V, Al A, Engheta N 2014 Science 343 160

    [30]

    Eidini M, Paulino G H 2015 Sci. Adv. 1

    [31]

    Ma G, Sheng P 2016 Sci. Adv. 2

    [32]

    Fan W, Yan B, Wang Z B, Wu L M 2016 Sci. Adv. 2

    [33]

    Chen H W, Yang C R, Fu C L, Zhao L, Gao Z Q 2006 Appl. Surf. Sci. 252 4171

    [34]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 1650

    [35]

    Han S H, Park Q H 2011 Phys. Rev. E 83 066601

    [36]

    Shafeeque Ali A K, Porsezian K, Uthayakumar T 2014 Phys. Rev. E 90 042910

    [37]

    Reed E J, Soljačić M, Gee R, Joannopoulos J D 2007 Phys. Rev. B 75 174302

    [38]

    Grischkowsky D, Duling Ⅲ I N, Chen J C, Chi C C 1987 Phys. Rev. Lett. 59 1663

  • [1]

    Ye P X 2007 Nonlinear Optical Physics (Vol. 1) (Beijing:Peking University Press) pp17-18 (in Chinese)[叶佩弦 2007 非线性光学物理 (北京:北京大学出版社) 第17-18页]

    [2]

    Yao B, Zheng Q H, Peng J H, Zhong R N, Xiang T, Xu W S 2011 Chin. Phys. Lett. 28 118401

    [3]

    Zhang M, Li L S, Zheng N, Shi Q F 2013 Chin. Phys. Lett. 30 077802

    [4]

    Chew W C 1990 Waves and Fields in Inhomogeneous Media (New York:Van Nostrand Reinhold) p161

    [5]

    Ertrk V B, Rojas R G 2003 IEEE Trans. Antenn. Propag. 51 739

    [6]

    Petrov E Y, Kudrin A V 2010 JETP 110 537

    [7]

    Kudrin A V, Petrov E Y 2010 JETP 110 537

    [8]

    Xiong H, Si L G, Huang P, Yang X 2010 Phys. Rev. E 82 057602

    [9]

    Xiong H, Si L G, Ding C, L X Y, Yang X, Wu Y 2011 Phys. Rev. A 84 043841

    [10]

    Xiong H, Si L G, Ding C, Yang X, Wu Y 2011 Phys.Rev. A 84 043841

    [11]

    Xiong H, Si L G, Guo J F, L X Y, Yang X 2014 Chin. Phys. B 23 060304

    [12]

    Xiong H, Si L G, Ding C, Yang X, Wu Y 2012 Phys.Rev. E 85 016606

    [13]

    Chen S Y, Li T, Xie J B, Xie H, Zhou P, Tian Y F,Xiong H, Si L G 2013 Phys. Rev. E 88 035202

    [14]

    Ranjbar M, Bahari A 2016 Opt. Commun. 375 19

    [15]

    Zhang S Y, Ma X R, Zhang S G, Chen L, Wang X Y,Mu K L, Wang S 2014 Chin. Phys. B 23 060304

    [16]

    Zhang S Y, Ma X R, Zhang S G, Chen L, Wang X Y,Mu K L, Wang S 2014 Chin. Phys. B 23 060304

    [17]

    Zhang C Q, Ruan C J, Zhao D, Wang S Z, Yang X D 2014 Chin. Phys. B 23 088401

    [18]

    Liu L X, Shao C G 2012 Chin. Phys. Lett. 29 111401

    [19]

    Es'kin V A, Kudrin A V, Petrov E Y 2001 Nature 414 716

    [20]

    Xiong H, Si L G, Yang X X, Wu Y 2015 Sci. Reports 5 11071

    [21]

    Grenfell B T, Bjornstad O N, Kappey J 2001 Nature 414 716

    [22]

    Shi L F, Zhu M, Zhou X C, Wang W G, Mo J Q 2008 Phys. Lett. A 372 417

    [23]

    Xu Y H, Han X L, Shi L F, Mo J Q 2014 Acta Phys.Sin. 63 090204 (in Chinese) [许永红, 韩祥临, 石兰芳, 莫嘉琪2014 63 090204]

    [24]

    Harko T, Mak M K 2015 J. Math. Phys. 56 111501

    [25]

    Sardar A, Husnine S M, Rizvi S T R, Younis M, Ali K 2015 Nonlinear Dynam. 82 1317

    [26]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [27]

    Shu Y Q 2011 Ph. D. Dissertation (Lanzhou:Lanzhou University) (in Chinese)[舒雅琴 2011 博士学位论文 (兰州:兰州大学)]

    [28]

    Petrov E Y, Kudrin A V 2012 Phys. Rev. E 85 055202

    [29]

    Silva A, Monticone F, Castaldi G, Galdi V, Al A, Engheta N 2014 Science 343 160

    [30]

    Eidini M, Paulino G H 2015 Sci. Adv. 1

    [31]

    Ma G, Sheng P 2016 Sci. Adv. 2

    [32]

    Fan W, Yan B, Wang Z B, Wu L M 2016 Sci. Adv. 2

    [33]

    Chen H W, Yang C R, Fu C L, Zhao L, Gao Z Q 2006 Appl. Surf. Sci. 252 4171

    [34]

    Fong D D, Stephenson G B, Streiffer S K, Eastman J A, Auciello O, Fuoss P H, Thompson C 2004 Science 304 1650

    [35]

    Han S H, Park Q H 2011 Phys. Rev. E 83 066601

    [36]

    Shafeeque Ali A K, Porsezian K, Uthayakumar T 2014 Phys. Rev. E 90 042910

    [37]

    Reed E J, Soljačić M, Gee R, Joannopoulos J D 2007 Phys. Rev. B 75 174302

    [38]

    Grischkowsky D, Duling Ⅲ I N, Chen J C, Chi C C 1987 Phys. Rev. Lett. 59 1663

  • [1] Lou Sen-Yue, Hao Xia-Zhi, Jia Man. Higher dimensional reciprocal integrable Kaup-Newell systems. Acta Physica Sinica, 2023, 72(10): 100204. doi: 10.7498/aps.72.20222418
    [2] Shi Lan-Fang, Zhu Min, Zhou Xian-Chun, Wang Wei-Gang, Mo Jia-Qi. The solitary traveling wave solution for a class of nonlinear evolution equations. Acta Physica Sinica, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [3] Shang Ya-Dong, Huang Yong. Explicit and exact traveling wave solutions to the nonlinear LC circuit equation. Acta Physica Sinica, 2013, 62(7): 070203. doi: 10.7498/aps.62.070203
    [4] Ouyang Cheng, Shi Lan-Fang, Lin Wan-Tao, Mo Jia-Qi. Perturbation method of travelling wave solution for (2+1) dimensional disturbed time delay breaking solitary wave equation. Acta Physica Sinica, 2013, 62(17): 170201. doi: 10.7498/aps.62.170201
    [5] Mo Jia-Qi, Cheng Rong-Jun, Ge Hong-Xia. Travelling wave solution of the weakly nonlinear evolution equation with control term. Acta Physica Sinica, 2011, 60(5): 050204. doi: 10.7498/aps.60.050204
    [6] Cai Zhao-Bin, Zhao Jian-Lin, Peng Tao, Li Dong. Hot-images induced by the random distribution defects in high power laser systems. Acta Physica Sinica, 2011, 60(11): 114209. doi: 10.7498/aps.60.114209
    [7] Mo Jia-Qi. Travelling wave solution of disturbed Vakhnenko equation for physical model. Acta Physica Sinica, 2011, 60(9): 090203. doi: 10.7498/aps.60.090203
    [8] Li Xiang-Zheng, Zhang Wei-Guo, Yuan San-Ling. LS method and qualitative analysis of traveling wave solutions of Fisher equation. Acta Physica Sinica, 2010, 59(2): 744-749. doi: 10.7498/aps.59.744
    [9] Pan Jun-Ting, Gong Lun-Xun. Jacobi elliptic function solutions to the coupled KdV-mKdV equation. Acta Physica Sinica, 2007, 56(10): 5585-5590. doi: 10.7498/aps.56.5585
    [10] Li Jian-Qing, Mo Yuan-Long. General theory of nonlinear beam-wave interaction in traveling-wave tubes. Acta Physica Sinica, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [11] Wang Jing, Shi Yan-Mei. Study of chirps induced by the higher-order nonlinear effects in the photonic crystal fiber. Acta Physica Sinica, 2006, 55(6): 2820-2824. doi: 10.7498/aps.55.2820
    [12] Gong Lun-Xun. Some new exact solutions of the Jacobi elliptic functions of NLS equation. Acta Physica Sinica, 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [13] Zhi Hong-Yan, Wang Qi, Zhang Hong-Qing. A series of new exact solutions to the (2+1)-dimensional Broer-Kau-Kupershmidt equation. Acta Physica Sinica, 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [14] Lü Da-Zhao. Abundant Jacobi elliptic function solutions of nonlinear evolution equations. Acta Physica Sinica, 2005, 54(10): 4501-4505. doi: 10.7498/aps.54.4501
    [15] Yu Ya-Xuan, Wang Qi, Zhao Xue-Qin, Zhi Hong-Yan, Zhang Hong-Qing. A direct algebraic method to obtain solitary solutions of nonlinear differential-difference equations. Acta Physica Sinica, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992
    [16] Liu Guan-Ting, Fan Tian-You. Jacobi elliptic function expansion method under a general function transform and its applications. Acta Physica Sinica, 2004, 53(3): 676-679. doi: 10.7498/aps.53.676
    [17] Li Hua-Mie, Lin Ji, Xu You-Sheng. Multiple travelling wave solutions of two newly generalized Ito systems. Acta Physica Sinica, 2004, 53(2): 349-355. doi: 10.7498/aps.53.349
    [18] Lü KE-PU, SHI YU-REN, DUAN WEN-SHAN, ZHAO JIN-BAO. THE SOLITARY WAVE SOLUTIONS TO KdV-BURGERS EQUATION. Acta Physica Sinica, 2001, 50(11): 2073-2076. doi: 10.7498/aps.50.2073
    [19] CHEN LU-JUN, LIANG CHANG-HONG, WU HONG-SHI. SMALL-AMPLITUDE SOLITONS SUPPORTED BY THE SELF-STEEPENING EFFECT IN OPTICAL FIBERS. Acta Physica Sinica, 1994, 43(11): 1803-1808. doi: 10.7498/aps.43.1803
    [20] TANG SHI-MIN. PROGRESSIVE WAVES AS SOLUTIONS TO VARIOUS NO NLINEAR WAVE EQUATIONS. Acta Physica Sinica, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
Metrics
  • Abstract views:  6412
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  03 February 2017
  • Accepted Date:  16 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map