-
研究了不同温度下聚焦透镜到样品表面距离对激光诱导击穿光谱(laser-induced breakdown spectroscopy, LIBS)强度的影响, 使用Nd:YAG脉冲激光激发样品并产生等离子体, 探测的等离子体发射的光谱线为Cu (I) 510.55 nm, Cu (I) 515.32 nm和Cu (I) 521.82 nm. 使用透镜的焦距为200 mm, 测量的聚焦透镜到样品表面距离的范围为170—200 mm, 样品温度从25 ℃升高到270 ℃, 激光能量为26 mJ. 总体上, 升高样品温度能有效地提高LIBS光谱的辐射强度. 在25 ℃和100 ℃时, 光谱强度随着聚焦透镜到样品表面距离的增加而单调增加; 在样品温度更高(150, 200, 250和270 ℃)时, 光谱强度随着距离的增加出现先升高而后又降低的变化. 同时, 在样品接近焦点附近, 随着样品温度的升高, LIBS光谱强度的变化不明显, 还可能出现光谱强度随着样品温度升高而降低的情况, 这在通过升高样品温度来提高LIBS光谱强度中特别值得我们注意. 为了更进一步了解这两个条件对LIBS的影响, 计算了等离子体温度和电子密度, 发现等离子体温度和电子密度的变化与光谱强度的变化几乎一致, 更高样品温度下产生的等离子体温度和电子密度更高.
-
关键词:
- 激光诱导击穿光谱 /
- 样品温度 /
- 聚焦透镜到样品表面距离 /
- 等离子体温度和电子密度
From previously published results of laser-induced breakdown spectroscopy, one can know that the change in the distance from the sample surface to the focusing lens has an important influence on the interaction between the sample and the laser, and increasing the sample temperature can enhance the coupling between the laser and the sample. However, almost no work has devoted to directly studying the influence of the distance between focusing lens and sample surface on the spectral intensity of laser-induced breakdown spectroscopy under different sample temperatures. In this paper, we investigate experimentally this subject. An Nd:YAG laser is used to excite the sample to produce the plasma. The detected spectral lines are Cu (I) 510.55 nm, Cu (I) 515.32 nm, and Cu (I) 521.82 nm. The focal length of focusing lens is 200 mm. The distance between focusing lens and sample surface ranges from 170 mm to 200 mm. The sample is heated from 25 ℃ to 270 ℃, and the laser energy is 26 mJ. In general, the spectral intensity of laser-induced breakdown spectroscopy can be effectively enhanced by increasing the sample temperature. At the sample temperatures of 25 ℃ and 100 ℃, the spectral intensity increases monotonically with the increase of the distance between focusing lens and sample surface; at higher sample temperatures (150, 200, 250, and 270 ℃), the spectral intensity first increases and then decreases with the increase of the distance between focusing lens and sample surface. In addition, near the focal point, with the increase of sample temperature, the increase of the spectral intensity is not obvious, and the spectral intensity decreases with the increase of sample temperature, which is particularly noteworthy in improving the spectral intensity of laser-induced breakdown spectroscopy by increasing sample temperature. In order to further understand the influences of these two conditions on laser-induced breakdown spectroscopy, we also calculate the plasma temperature and electron density, and find that the variation of plasma temperature and electron density are almost the same as that of spectral intensity. The plasma temperature and electron density at higher sample temperature are higher.-
Keywords:
- laser-induced breakdown spectroscopy /
- sample temperature /
- distance between focusing lens and sample surface /
- plasma temperature and electron density
[1] Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617
Google Scholar
[2] Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419
Google Scholar
[3] Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213
Google Scholar
[4] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 64 024212
Google Scholar
Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212
Google Scholar
[5] Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701
Google Scholar
[6] Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699
Google Scholar
[7] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497
Google Scholar
[8] Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1
Google Scholar
[9] Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621
Google Scholar
[10] Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168
Google Scholar
[11] 吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206
Google Scholar
Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206
Google Scholar
[12] Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303
Google Scholar
[13] 李百慧, 高勋, 宋超, 林景全 2016 65 235201
Google Scholar
Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201
Google Scholar
[14] Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638
Google Scholar
[15] Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301
Google Scholar
[16] Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702
Google Scholar
[17] Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047
Google Scholar
[18] de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180
Google Scholar
[19] Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850
Google Scholar
[20] Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481
Google Scholar
[21] Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867
Google Scholar
[22] Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
Google Scholar
[23] Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058
Google Scholar
[24] Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79
Google Scholar
[25] Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301
Google Scholar
[26] Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36
Google Scholar
[27] Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001
Google Scholar
[28] Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501
Google Scholar
[29] Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305
Google Scholar
[30] Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483
Google Scholar
[31] Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793
Google Scholar
[32] Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730
Google Scholar
[33] Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501
Google Scholar
[34] Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367
Google Scholar
[35] Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71
Google Scholar
[36] 刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 62 025203
Google Scholar
Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203
Google Scholar
[37] Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304
Google Scholar
[38] Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112
Google Scholar
[39] Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302
Google Scholar
[40] Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401
Google Scholar
[41] Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204
Google Scholar
[42] Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504
Google Scholar
[43] Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116
Google Scholar
[44] Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514
Google Scholar
[45] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 67 165201
Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201
Google Scholar
[46] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 66 115201
Google Scholar
Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201
Google Scholar
[47] Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154
Google Scholar
[48] Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301
Google Scholar
[49] NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html
[50] Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649
Google Scholar
[51] Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307
Google Scholar
-
图 4 不同样品温度下Cu (I) 510.55 nm (a)和Cu (I) 521.82 nm (b)光谱峰强度随着聚焦透镜到样品表面距离的变化(激光能量为26 mJ)
Fig. 4. Evolution of spectral peak intensities at Cu (I) 510.55 nm (a) and Cu (I) 521.82 nm (b) with the distance between focusing lens and sample surface under different sample temperatures. Laser energy is 26 mJ.
图 7 典型的谱线半高宽(
$\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$ )拟合图, 其中聚焦透镜到样品表面的距离分别为(a) 175, (b) 180, (c) 185和(d) 195 mm; 样品温度为200 ℃Fig. 7. Typical Gauss fitting (
$\scriptstyle{\text{Δ}}{\lambda _{{\rm{measured}}}}$ ) for selected distances between focusing lens and sample surface under 200 ℃ sample temperature. The distances are (a) 175, (b) 180, (c) 185 and 195 mm (d).表 1 用于计算等离子体温度的光谱线参数表
Table 1. Spectral parameters of Cu (I) for calculating plasma temperature.
波长/nm Ek/eV g A/108 s–1 510.55 3.817 6 0.020(5) 515.32 6.191 2 0.60(15) 521.82 6.192 4 0.75(9) -
[1] Wang Z, Dong F, Zhou W 2015 Plasma Sci. Technol. 17 617
Google Scholar
[2] Wang Z, Ting B, Yuan, Z Y, Zhou W D, Lu J D, Ding H B, Zeng X Y 2014 Front. Phys. 9 419
Google Scholar
[3] Wang Z Z, Deguchi Y, Zhang Z Z, Wang Z, Zeng X Y, Yan J J 2016 Front. Phys. 11 114213
Google Scholar
[4] 朱光正, 郭连波, 郝中骐, 李常茂, 沈萌, 李阔湖, 李祥友, 刘建国, 曾晓雁, 陆永枫 2015 64 024212
Google Scholar
Zhu G Z, Guo L B, Hao Z Q, Li C M, Shen M, Li K H, Li X Y, Liu J G, Zeng X Y, Lu Y F 2015 Acta Phys. Sin. 64 024212
Google Scholar
[5] Wang Q Q, Liu K, Zhao H, Ge C H, Huang Z W 2012 Front. Phys. 7 701
Google Scholar
[6] Hu L, Zhao N, Liu W, Meng D, Fang L, Wang Y, Yu Y, Ma M 2015 Plasma Sci. Technol. 17 699
Google Scholar
[7] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y, Jin M 2016 J. Anal. Atom. Spectrom. 31 497
Google Scholar
[8] Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C, Han X 2018 Appl. Spectrosc. Rev. 53 1
Google Scholar
[9] Li X, Wang Z, Fu Y, Li Z, Ni W 2015 Plasma Sci. Technol. 17 621
Google Scholar
[10] Wang X, Chen A, Sui L, Wang Y, Zhang D, Li S, Jiang Y, Jin M 2018 J. Anal. Atom. Spectrom. 33 168
Google Scholar
[11] 吴宜青, 刘津, 莫欣欣, 孙通, 刘木华 2017 66 054206
Google Scholar
Wu Y Q, Liu J, Mo X X, Sun T, Liu M H 2017 Acta Phys. Sin. 66 054206
Google Scholar
[12] Lu Y, Zhou Y S, Qiu W, Huang X, Liu L, Jiang L, Silvain J F, Lu Y F 2015 J. Anal. Atom. Spectrom. 30 2303
Google Scholar
[13] 李百慧, 高勋, 宋超, 林景全 2016 65 235201
Google Scholar
Li B H, Gao X, Song C, Lin J Q 2016 Acta Phys. Sin. 65 235201
Google Scholar
[14] Li C M, Guo L B, He X N, Hao Z Q, Li X Y, Shen M, Zeng X Y, Lu Y F 2014 J. Anal. Atom. Spectrom. 29 638
Google Scholar
[15] Wang Q, Chen A, Zhang D, Wang Y, Sui L, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 073301
Google Scholar
[16] Zhou W, Su X, Qian H, Li K, Li X, Yu Y, Ren Z 2013 J. Anal. Atom. Spectrom. 28 702
Google Scholar
[17] Liu L, Huang X, Li S, Lu Y, Chen K, Jiang L, Silvain J F, Lu Y F 2015 Opt. Express 23 15047
Google Scholar
[18] de Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M, de Pascale O 2013 Anal. Chem. 85 10180
Google Scholar
[19] Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y, Zeng X 2016 Opt. Express 24 7850
Google Scholar
[20] Tavassoli S H, Gragossian A 2009 Opt. Laser Technol. 41 481
Google Scholar
[21] Sanginés R, Sobral H, Alvarez-Zauco E 2012 Appl. Phys. B 108 867
Google Scholar
[22] Sanginés R, Sobral H, Alvarez-Zauco E 2012 Spectrochim. Acta B 68 40
Google Scholar
[23] Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M, Saghafifar H 2014 J. Eur. Opt. Soc.-Rapid 9 14058
Google Scholar
[24] Hanson C, Phongikaroon S, Scott J R 2014 Spectrochim. Acta B 97 79
Google Scholar
[25] Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S, Jin M 2017 Phys. Plasmas 24 013301
Google Scholar
[26] Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J, Pedarnig J D 2013 Spectrochim. Acta B 87 36
Google Scholar
[27] Liu Y, Tong Y, Li S, Wang Y, Chen A, Jin M 2016 Chin. Opt. Lett. 14 123001
Google Scholar
[28] Liu Y, Tong Y, Wang Y, Zhang D, Li S, Jiang Y, Chen A, Jin M 2017 Plasma Sci. Technol. 19 125501
Google Scholar
[29] Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 083305
Google Scholar
[30] Multari R A, Foster L E, Cremers D A, Ferris M J 1996 Appl. Spectrosc. 50 1483
Google Scholar
[31] Aguilera J A, Aragón C 2008 Spectrochim. Acta B 63 793
Google Scholar
[32] Chen M, Liu Y H, Liu X D, Zhao M W 2012 Laser Phys. Lett. 9 730
Google Scholar
[33] Kasperczuk A, Pisarczyk T, Kalal M, Ullschmied J, Krousky E, Masek K, Pfeifer M, Rohlena K, Skala J, Pisarczyk P 2009 Appl. Phys. Lett. 94 081501
Google Scholar
[34] Guo J, Shao J, Wang T, Zheng C, Chen A, Jin M 2017 J. Anal. Atom. Spectrom. 32 367
Google Scholar
[35] Zhang D, Chen A, Wang X, Wang Y, Sui L, Ke D, Li S, Jiang Y, Jin M 2018 Spectrochim. Acta B 143 71
Google Scholar
[36] 刘月华, 陈明, 刘向东, 崔清强, 赵明文 2013 62 025203
Google Scholar
Liu Y H, Chen M, Liu X D, Cui Q Q, Zhao M W 2013 Acta Phys. Sin. 62 025203
Google Scholar
[37] Li X, Wei W, Wu J, Jia S, Qiu A 2013 J. Appl. Phys. 113 243304
Google Scholar
[38] Amin S, Bashir S, Anjum S, Akram M, Hayat A, Waheed S, Iftikhar H, Dawood A, Mahmood K 2017 Phys. Plasmas 24 083112
Google Scholar
[39] Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y, Jin M 2018 Phys. Plasmas 25 033302
Google Scholar
[40] Tian Y, Xue B, Song J, Lu Y, Li Y, Zheng R 2017 Appl. Phys. Express 10 072401
Google Scholar
[41] Wang Y, Chen A, Li S, Ke D, Wang X, Zhang D, Jiang Y, Jin M 2017 AIP Adv. 7 095204
Google Scholar
[42] Haq S U, Ahmat L, Mumtaz M, Shakeel H, Mahmood S, Nadeem A 2015 Phys. Plasmas 22 083504
Google Scholar
[43] Guo J, Wang T, Shao J, Chen A, Jin M 2018 J. Anal. Atom. Spectrom. 33 2116
Google Scholar
[44] Thorstensen J, Foss S E 2012 J. Appl. Phys. 112 103514
Google Scholar
[45] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂 2018 67 165201
Google Scholar
Zhao F G, Zhang Y, Zhang L, Yin W B, Dong L, Ma W G, Xiao L T, Jia S T 2018 Acta Phys. Sin. 67 165201
Google Scholar
[46] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星 2017 66 115201
Google Scholar
Yang D P, Li S Y, Jiang Y F, Chen A M, Jin M X 2017 Acta Phys. Sin. 66 115201
Google Scholar
[47] Wang Q, Chen A, Wang Y, Sui L, Li S, Jin M 2018 J. Anal. Atom. Spectrom. 33 1154
Google Scholar
[48] Chen A, Jiang Y, Wang T, Shao J, Jin M 2015 Phys. Plasmas 22 033301
Google Scholar
[49] NIST Atomic Spectra Database http://physics.nist.gov/PhysRefData/ASD/lines_form.html
[50] Wang J, Fu H, Ni Z, Chen X, He W, Dong F 2015 Plasma Sci. Technol. 17 649
Google Scholar
[51] Konjević N, Wiese W 1990 J. Phys. Chem. Ref. Data 19 1307
Google Scholar
计量
- 文章访问数: 8489
- PDF下载量: 90
- 被引次数: 0