-
The recent discovery of borospherene B40 marks the onset of a new class of all-boron fullerenes. External electric field can influence the structure and property of molecule. It is necessary to understand the electrostatic field effect in the borospherene B40. In this work, density functional theory method at the PBE0 level with the 6-31G* basis set is used to investigate the ground state structures, mulliken atomic charges, the highest occupied molecular orbital (HOMO) energy levels, the lowest unoccupied molecular orbital (LUMO) energy levels, energy gaps, electric dipole moments, infrared spectra and Raman spectra of borospherene B40 under the external electric field within the range of values F=0-0.06 a.u.. The electronic spectra (the first 18 excited states contain excited energies, excited wavelengths and oscillator strengths) of borospherene B40 are calculated by the time-dependent density functional theory method (TD-PBE0) with the 6-31G* basis set under the same external electric field. The results show that borospherene B40 can be elongated in the direction of electric field and B40 molecule is polarized under the external electric field. Meanwhile, the addition of external electric field results in lower symmetry (C2v), however, electronic state of borospherene B40 is not changed under the external electric field. Moreover, the calculated results show that the electric dipole moment is proved to be increasing with the increase of the external field intensity, but the total energy and energy gap are proved to decrease with the increase of external field intensity. The addition of external electric field can modify the infrared and Raman spectra, such as the shift of vibrational frequency and the strengthening of infrared and Raman peaks. Furthermore, the calculated results indicate that the external electric field has a significant effect on the electronic spectrum of borospherene B40. The increase of the electric field intensity can lead to the redshift of electronic spectrum. With the change of the electric field intensity, the strongest excited state (with the biggest oscillator strength) can become very weak (with the small oscillator strength) or optically inactive (with the oscillator strength of zero). Meanwhile, the weak excited state can become the strongest excited state by the external field. The ground state properties and spectral properties of borospherene B40 can be modified by the external electric field. Our findings can provide theoretical guidance for the application of borospherene B40 in the future.
-
Keywords:
- B40 /
- external electric field /
- ground state /
- spectral properties
[1] Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137
[5] Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827
[6] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961
[7] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811
[8] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503
[9] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282
[10] Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804
[11] Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696
[12] Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16
[13] Cheng L J 2012 J. Chem. Phys. 136 104301
[14] Lu H G, Li S D 2013 J. Chem. Phys. 139 224307
[15] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727
[16] He R X, Zeng X C 2015 Chem. Commun. 51 3185
[17] Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020
[18] Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941
[19] Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1
[20] Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38
[21] An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024
[22] Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952
[23] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[24] Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]
[25] Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 64 043101]
[26] Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子 21 617]
[27] Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)
[28] Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87
[29] Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160
-
[1] Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E 1985 Nature 318 162
[2] Iijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[4] Wang X S, Li Q Q, Xie J, Jin Z, Wang J Y, Li Y, Jiang K L, Tan S S 2009 Nano Lett. 9 3137
[5] Zhai H J, Kiran B, Li J, Wang L S 2003 Nature Mater. 2 827
[6] Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Nati. Acad. Sci 102 961
[7] Alexandrova A N, Boldyrev A I, Zhai H J, Wang L S 2006 Coord. Chem. Rev. 250 2811
[8] Oger E, Crawford N R M, Kelting R, Weis P, Kappes M M, Ahlrichs R 2007 Angew. Chem. Int. Ed. 46 8503
[9] Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J Li S D 2014 Phys. Chem. Chem. Phys. 16 18282
[10] Szwacki N G, Sadrzadeh A, Yakobson B I 2007 Phys. Rev. Lett. 98 166804
[11] Sheng X L, Yan Q B, Zheng Q R, Su G 2009 Phys. Chem. Chem. Phys. 11 9696
[12] Wang L, Zhao J J, Li F Y, Chen Z F 2010 Chem. Phys. Lett. 501 16
[13] Cheng L J 2012 J. Chem. Phys. 136 104301
[14] Lu H G, Li S D 2013 J. Chem. Phys. 139 224307
[15] Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727
[16] He R X, Zeng X C 2015 Chem. Commun. 51 3185
[17] Li S X, Zhang Z P, Long Z W, Sun G Y, Qin S J 2016 Sci. Rep. 6 25020
[18] Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941
[19] Jin P, Hou Q H, Tang C C, Chen Z F 2015 Theor. Chem. Acc. 34 1
[20] Yang Z, Ji Y L, Lan G Q, Xu L C, Liu X G, Xu B S 2015 Solid State Commun. 217 38
[21] An Y P, Zhang M J, Wu D P, Fu Z M, Wang T T, Xia C X 2016 Phys. Chem. Chem. Phys. 18 12024
[22] Dong H L, Hou T J, Lee S T, Li Y Y 2015 Sci. Rep. 5 09952
[23] Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Acta Phys. Sin. 61 043104 (in Chinese) [徐国亮, 谢会香, 袁伟, 张现周, 刘玉芳 2012 61 043104]
[24] Cao X W, Ren Y, Liu H, Li S L 2014 Acta Phys. Sin. 63 043101 (in Chinese) [曹欣伟, 任杨, 刘慧, 李姝丽 2014 63 043101]
[25] Li S X, Wu Y G, Linhu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 64 043101]
[26] Shen H J, Shi Y J 2004 Chin. Atom Mol. Phys. 21 617 (in Chinese) [沈海军, 史友进 2004 原子与分子 21 617]
[27] Frisch M J, Tracks G W, Schlegel H B, et al. 2009 Gaussian 09, Revision A. 02 (Wallingford CT: Gaussian Inc.)
[28] Tuchin A V, Bityutskaya L A, Bormontov E N 2015 Eur. Phys. J. D 69 87
[29] Chen, Q, Zhang S Y, Bai H, Tian W J, Gao T, Li H R, Miao C Q, Mu Y W, Lu H G, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 8160
Catalog
Metrics
- Abstract views: 6521
- PDF Downloads: 182
- Cited By: 0