Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory

Li Ya-Sha Xie Yun-Long Huang Tai-Huan Xu Cheng Liu Guo-Cheng

Citation:

Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory

Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cross-linked polyethylene is the main power cable insulation material and is widely used in high voltage cables. In order to study the effect of external electric field on the molecular structure of salt cross-linked polyethylene, in this paper we use the basis set of def2-TZVP for Zn atom, uses the basis set of 6-31(d) for C, H, O atoms, and uses the Minnesota density functional (M06-2X) to optimize the molecular structure of salt cross-linked polyethylene, then we obtain the stable structure of its ground state. On this basis, the molecular structure, total energy, kinetic energy, potential energy, dipole moment and polarizability changes of salt cross-linked polyethylene under the action of different external electric fields (from 0 to 0.020 a.u.) are studied by the same method. The influence of external electric field on energy level, energy gap, orbital distribution and composition of frontier orbit are studied. And the effect of external electric field on bond level, breaking bond and infrared spectrum of atoms are also discussed. The research results show that as the external electric field intensity increases, the cross-linked polyethylene molecule is gradually transformed from the spatial network structure into a linear structure, and the total energy and kinetic energy of the molecule are reduced, but its potential energy, dipole moment and polarizability are gradually increased. The highest occupied molecular orbital energy level increases with the increase of external electric field intensity. The lowest unoccupied molecular orbital energy level starts to decrease continuously from the electric field intensity of 0.011 a.u. (1 a.u. = 5:1421011 V/m), the energy gap decreases continuously, and the critical breakdown field intensity is 11.16 GV/m. With the external electric field increasing dramatically, the highest occupied molecular orbital is obviously converged at chain end in the direction of inverse electric field. Its orbital composition is more than 60%, contributed by the C atom of methyl group in the polyethylene terminal. The molecular polyethylene chain end of the inverse electric field direction exhibits an electrophilic reactivity, and C atoms are more likely to lose electrons. The Mayer bond order value of the CC bond decreases gradually, which leads the CC bonds to break more easily, and thus forming the methyl carbon negative ions. The lowest unoccupied molecular orbital moves along the electric field direction and is converged at the other end of polyethylene chain, nearly 80% of its orbital composition is contributed by the methyl of polyethylene chain end. The molecule shows a nucleophilic reactivity at the polyethylene end along the electric field direction, methyl is easier to obtain the electrons. The Mayer bond order value of the CH bond decreases gradually, and it brings about the CH bond more likely to break into H positive ions. The infrared absorption peaks of polyethylene chains are mainly concentrated in the high frequency region. With the increase of electric field intensity, the red shift occurs and the bond energy of polyethylene chain decreases. The infrared absorption peak of the cross-linked salt bridge is mainly concentrated in the low frequency area. Although there are both red shift and blue shift, the effect of red shift is more obvious, and the energy of the whole salt bridge decreases. From the variation of molecular potential energy, energy gap and Mayer bond order value, it is found that the stability of salt cross-linked polyethylene molecular system decreases with the increase of external electric field intensity.
      Corresponding author: Li Ya-Sha, liyasha@ctgu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51577105).
    [1]

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]

    [2]

    Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]

    [3]

    Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]

    [4]

    Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]

    [5]

    Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261

    [6]

    Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778

    [7]

    Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162

    [8]

    Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704

    [9]

    Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854

    [10]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [11]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [12]

    Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]

    [13]

    Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]

    [14]

    Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]

    [15]

    Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]

    [16]

    Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]

    [17]

    Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]

    [18]

    Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209

    [19]

    Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]

    [20]

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]

    [21]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 63 177701]

    [22]

    Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 66 056501]

    [23]

    Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 66 087201]

    [24]

    Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]

    [25]

    Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]

    [26]

    Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]

    [27]

    Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 65 143101]

    [28]

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 63 076102]

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191

    [30]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72

    [31]

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]

    [32]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [33]

    Lu T, Chen F W 2013 Phys. Chem. A 117 3100

  • [1]

    He J L, Dang B, Zhou Y, Hu J 2015 High Voltage Eng. 41 1417 (in Chinese) [何金良, 党斌, 周垚, 胡军 2015 高电压技术 41 1417]

    [2]

    Zhou Y X, Zhao J K, Liu R, Chen Z Z, Zhang Y X 2014 High Voltage Eng. 40 2593 (in Chinese) [周远翔, 赵健康, 刘睿, 陈铮铮, 张云霄 2014 高电压技术 40 2593]

    [3]

    Du B X, Li Z L, Yang Z R, Li J 2017 High Voltage Eng. 43 344 (in Chinese) [杜伯学, 李忠磊, 杨卓然, 李进 2017 高电压技术 43 344]

    [4]

    Zhou Q Y 2017 Power Sys. Technol. 41 1491 (in Chinese) [周勤勇 2017 电网技术 41 1491]

    [5]

    Ieda M 1987 IEEE Trans. Dielectr. Electr. Insul. 22 261

    [6]

    Zhang Y W, Lewiner J, Alquie C, Hampton N 1996 IEEE Trans. Dielectr. Electr. Insul. 3 778

    [7]

    Uehara H, Kudo K 2011 IEEE Trans. Dielectr. Electr. Insul. 18 162

    [8]

    Kim W J, Kim S H, Kim H J, Cho J W, Lee J S, Lee H G 2013 IEEE Trans. Appl. Supercond. 23 5401704

    [9]

    Zhou K, Huang M, Tao W B, He M, Yang M L 2016 IEEE Trans. Dielectr. Electr. Insul. 23 1854

    [10]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [11]

    Liu T, Fu M L, Hou S, L Z P, Wu K, Wang X 2015 High Voltage Eng. 41 2665 (in Chinese) [刘通, 傅明利, 侯帅, 吕泽鹏, 吴锴, 王霞 2015 高电压技术 41 2665]

    [12]

    Wang X, Liu X, Zheng M B, Wu K, Peng Z R 2011 High Voltage Eng. 37 2424 (in Chinese) [王霞, 刘霞, 郑明波, 吴锴, 彭宗仁 2011 高电压技术 37 2424]

    [13]

    Zhong Q X, Lan L, Wu J D, Yin Y 2015 Chin. Soc. Elec. Eng. 35 2903 (in Chinese) [钟琼霞, 兰莉, 吴建东, 尹毅 2015 中国电机工程学报 35 2903]

    [14]

    Zhou L J, Cheng R, Jiang J F, Peng Q, Wang D Y, Zeng Y T 2015 High Voltage Eng. 41 2650 (in Chinese) [周利军, 成睿, 江俊飞, 彭倩, 王东阳, 曾原弢 2015 高电压技术 41 2650]

    [15]

    Zhou L J, Qiu Q P, Cheng R, Chen Y, Liu D C, Zhang L L 2016 Chin. Soc. Elec. Eng. 36 5094 (in Chinese) [周利军, 仇祺沛, 成睿, 陈颖, 刘栋财, 张乐乐 2016 中国电机工程学报 36 5094]

    [16]

    Zhou K, Li T H, Yang M L, Huang M, Zhu G Y 2017 High Voltage Eng. 43 3543 (in Chinese) [周凯, 李天华, 杨明亮, 黄明, 朱光亚 2017 高电压技术 43 3543]

    [17]

    Li K L, Zhou K, Huang M, Yang M L, Tao W B 2018 Chin. Soc. Elec. Eng. 38 956 (in Chinese) [李康乐, 周凯, 黄明, 杨明亮, 陶文彪 2018 中国电机工程学报 38 956]

    [18]

    Yamano Y 2014 IEEE Trans. Dielectr. Electr. Insul. 21 209

    [19]

    Jiang K P, Sun X J, Huang Y, Bu J, Zhang J, Wu C S 2017 High Voltage Eng. 43 355 (in Chinese) [江平开, 孙小金, 黄宇, 卜晶, 张军, 吴长顺 2017 高电压技术 43 355]

    [20]

    Li Q M, Huang X W, Liu T, Yan J Y, Wang Z D, Zhang Y, Lu X 2016 Trans. China Electrotechn. Soc. 3 1 (in Chinese) [李庆民, 黄旭炜, 刘涛, 闫江燕, 王兆东, 张颖, 鲁旭 2016 电工技术学报 3 1]

    [21]

    Chi X H, Gao J G, Zheng J, Zhang X H 2014 Acta Phys. Sin. 63 177701 (in Chinese) [迟晓红, 高俊国, 郑杰, 张晓虹 2014 63 177701]

    [22]

    Zhang X P, Wang G J, Luo B Q, Tan F L, Zhao J H, Sun C W, Liu C L 2017 Acta Phys. Sin. 66 056501 (in Chinese) [张旭平, 王桂吉, 罗斌强, 谭福利, 赵剑衡, 孙承纬, 刘仓理 2017 66 056501]

    [23]

    Li L L, Zhang X H, Wang Y L, Guo J H 2017 Acta Phys. Sin. 66 087201 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 国家辉 2017 66 087201]

    [24]

    Li L L, Zhang X H, Wang Y L, Gao J G, Guo N, Wang M 2017 High Voltage Eng. 43 2866 (in Chinese) [李丽丽, 张晓虹, 王玉龙, 高俊国, 郭宁, 王猛 2017 高电压技术 43 2866]

    [25]

    Yang Q, Chen X, Lan F T, He Z W, Liu H 2016 High Voltage Eng. 42 3626 (in Chinese) [杨青, 陈新, 兰逢涛, 何州文, 刘辉 2016 高电压技术 42 3626]

    [26]

    Zhu X H 2010 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [朱晓辉 2010 博士学位论文 (天津: 天津大学)]

    [27]

    Chen Z Z 2016 Acta Phys. Sin. 65 143101 (in Chinese) [陈泽章 2016 65 143101]

    [28]

    Li X, Zhang L, Yang M S, Chu X X, Xu C, Chen L, Wang Y Y 2014 Acta Phys. Sin. 63 076102 (in Chinese) [李鑫, 张梁, 羊梦诗, 储修祥, 徐灿, 陈亮, 王悦悦 2014 63 076102]

    [29]

    Li Y J, Li S L, Gong P, Li Y L, Cao M S, Fang X Y 2018 Physica E 98 191

    [30]

    Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H, Cao M S 2018 Physica B 539 72

    [31]

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393 (in Chinese) [卢天, 陈飞武 2011 化学学报 69 2393]

    [32]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [33]

    Lu T, Chen F W 2013 Phys. Chem. A 117 3100

  • [1] Wang Jiang-Qiong, Li Wei-Kang, Zhang Wen-Ye, Wan Bao-Quan, Zha Jun-Wei. Aging and life control of cross-linked polyethylene as cable insulation material. Acta Physica Sinica, 2024, 73(7): 078801. doi: 10.7498/aps.73.20240201
    [2] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [4] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [5] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [6] Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu. Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide. Acta Physica Sinica, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] Xu Mei, Linghu Rong-Feng, Zhi Qi-Jun, Yang Xiang-Dong, Wu Wei-Wei. Properties of free radical BeH in external electric field. Acta Physica Sinica, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [8] Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng. Properties of ground state and spectrum of CdSe in different external electric fields. Acta Physica Sinica, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [9] Xu Guo-Liang, Zhang Lin, Lu Zhan-Sheng, Liu Pei, Liu Yu-Fang. Electric field effects on the excited properties of Si2N2 molecule with special configuration:a density-functional study. Acta Physica Sinica, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [10] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [11] An Yue-Hua, Xiong Bi-Tao, Xing Yun, Shen Jing-Xiang, Li Pei-Gang, Zhu Zhi-Yan, Tang Wei-Hua. Structural properties of ZnO molecules under an external electric field. Acta Physica Sinica, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [12] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [13] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [14] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [15] Li Sheng-Tao, Huang Qi-Feng, Sun Jian, Zhang Tuo, Li Jian-Ying. Influence of aggregation structure and traps on surface flashover of XLPE in vacuum. Acta Physica Sinica, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [16] Cai Shao-Hong, Zhou Ye-Hong. The excited states structure for chloroethylene under the external electric field. Acta Physica Sinica, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [17] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [18] Huang Duo-Hui, Wang Fan-Hou, Min Jun, Zhu Zheng-He. Study on structure characteristics of MgO molecule under external electric field. Acta Physica Sinica, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [19] Qi Kai-Tian, Yang Chuan-Lu, Li Bing, Zhang Yan, Sheng Yong. Density functional theory study on TinLa(n=1—7) clusters. Acta Physica Sinica, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [20] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
Metrics
  • Abstract views:  7454
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2018
  • Accepted Date:  09 June 2018
  • Published Online:  20 September 2019

/

返回文章
返回
Baidu
map