-
Fiber-optic temperature sensors have gained much attention owing to their intrinsic features of light weight, immunity to electromagnetic interference, and capability for distributed measurement. Especially, temperature sensors based on Fabry-Perot interferometers (FPIs) are attractive owing to their advantages of compact size and convenient reflection measurement. However, due to the low thermal expansion or/and thermo-optic coefficient of fiber, the temperature sensitivities of these sensors are normally low (~10 pm/℃ or even lower). In order to improve the temperature sensitivity, a device with dual cascaded FPIs is proposed and demonstrated in this paper, which works on vernier effect and exhibits a much higher temperature sensitivity. The device is fabricated by splicing a short segment of large mode area (LMA) fiber to a short segment of capillary tube fused with a section of single-mode fiber to form an extrinsic Fabry-Perot interferometer with a glass cavity cascaded to an intrinsic FPI with a narrow air cavity. By setting the lengths of capillary tube and LMA fiber to allow similar free spectral ranges to be obtained, and superimposing of the reflection spectra of the two FPIs, the vernier effect can be generated. Firstly, the principle of temperature sensing based on vernier effect of this device is analyzed and simulated theoretically, and it is found that the temperature sensitivity can be improved significantly by using vernier effect compared with that of a single FPI with an air-cavity or glass cavity by directly tracing resonant dips/peaks. Then, the temperature responses of the FPI with single air-cavity and dual cascaded cavities are measured, respectively. Experimental results match well with the theoretical analysis carried out. The temperature sensitivity of the proposed sensor is improved greatly from 0.71 pm/℃ for a single FPI sensor with an air-cavity to 179.30 pm/℃ by employing the vernier effect. Additionally, the sensor exhibits good repeatability in a temperature range of 100-500℃. The proposed sensor has the advantages of compact size (1 mm in dimension) and high sensitivity, which makes it promising for temperature sensing in a variety of industries, such as food inspection, pharmacy, oil/gas exploration, environment, and high-voltage power systems.
-
Keywords:
- fiber optic sensors /
- Fabry-Perot interferometer /
- vernier effect /
- temperature
[1] Lee B 2003 Opt. Fiber Technol. 9 57
[2] Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 65 24211]
[3] Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]
[4] Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]
[5] Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1
[6] Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451
[7] Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149
[8] Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468
[9] Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269
[10] Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619
[11] Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167
[12] Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142
[13] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[14] Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633
[15] Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245
[16] Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757
[17] Dai D X 2009 Opt. Express 17 23817
[18] Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4
[19] Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581
[20] Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73
[21] Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461
[22] Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467
[23] Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813
[24] Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891
[25] Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418
[26] Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626
[27] Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669
[28] Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50
[29] Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367
-
[1] Lee B 2003 Opt. Fiber Technol. 9 57
[2] Fu X H, Xie H Y, Yang C Q, Zhang S Y, Fu G W, Bi W H 2016 Acta Phys. Sin. 65 24211 (in Chinese) [付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红 2016 65 24211]
[3] Gui X, Hu C C, Xie Y, Li Z Y 2015 Acta Phys. Sin. 64 050704 (in Chinese) [桂鑫, 胡陈晨, 谢莹, 李政颖 2015 64 050704]
[4] Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]
[5] Grattan K T V, Sun T 2000 Optical Fiber Sensor Technology (New York: Springer) p1
[6] Islam M R, Ali M M, Lai M H, Lim K S, Ahmad H 2014 Sensors 14 7451
[7] Lee C L, Lee L H, Hwang H E, Hsu J M 2012 IEEE Photon. Technol. Lett. 24 149
[8] Qi F, Hu L, Dong X, Xin Y, Zhao C L, Jin S, Chan J C C 2013 IEEE Sensors J. 13 3468
[9] Wang Y, Wang D N, Liao C R, Hu T, Guo J, Wei H 2013 Opt. Lett. 38 269
[10] Wang J J, Dong B, Lally E, Gong J M, Han M, Wang A B 2010 Opt. Lett. 35 619
[11] Chen L H, Li T, Chan C C, Menon R, Balamurali P, Shaillender M, Neu B, Ang X M, Zu P, Wong W C, Leong K C 2012 Sens. Actuators B 169 167
[12] Yu C B, Liu L, Chen X X, Liu Q F, Gong Y 2015 Photon. Sens. 5 142
[13] Ran Z L, Rao Y J, Liu W J, Liao X, Chiang K S 2008 Opt. Express 16 2252
[14] Tian J J, Lu Y J, Zhang Q, Han M 2013 Opt. Express 21 6633
[15] Wang R H, Qiao X G 2015 IEEE Photon. Technol. Lett. 27 245
[16] Lu Y J, Han M, Tian J J 2014 IEEE Photon. Technol. Lett. 26 757
[17] Dai D X 2009 Opt. Express 17 23817
[18] Jin L, Li M, He J J 2009 Asia Communications and Photonics Conference and Exhibition Shanghai, China, November 2-6, 2009 pTUM4
[19] Zhang P, Tang M, Gao F, Zhu B, Fu S, Ouyang J, Shum P P, Liu D 2014 Opt. Express 22 19581
[20] Shao L Y, Luo Y, Zhang Z, Zou X, Luo B, Pan W, Yan L 2015 Opt. Commun. 336 73
[21] Yu Y, Chen X, Huang Q, Du C, Ruan S, Wei H 2015 Appl. Phys. B 120 461
[22] Lee B H, Kim Y H, Park K S, Eom J B, Kim M J, Rho B S, Choi H Y 2012 Sensors 12 2467
[23] Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813
[24] Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891
[25] Ma J, Ju J, Jin L, Jin W, Wang D 2011 Opt. Express 19 12418
[26] Jasim A A, Harun S W, Arof H, Ahmad H 2013 IEEE Sensors J. 13 626
[27] Zhou Y, Zhou W, Chan C C, Wei C W, Shao L Y, Cheng J, Dong X 2011 Opt. Commun. 284 5669
[28] Li L, Zhang G, Liu Y, Bi L, Jiang L, Li Y, Yao J, Gao C, Zhang Y, Khan A R, Ma Q 2015 Asia Communications and Photonics Conference Hong Kong, China, November 19-23, 2015 pASu2A.50
[29] Zhu Y, Shum P, Bay H W, Yan M, Yu X, Hu J, Hao J, Lu C 2005 Opt. Lett. 30 367
Catalog
Metrics
- Abstract views: 9827
- PDF Downloads: 676
- Cited By: 0