Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of linear chirp on the output characteristics of cross polarized wave with saturated power density

Qin Shuang Wang Zhao-Hua Wang Xian-Zhi He Hui-Jun Shen Zhong-Wei Wei Zhi-Yi

Citation:

Influence of linear chirp on the output characteristics of cross polarized wave with saturated power density

Qin Shuang, Wang Zhao-Hua, Wang Xian-Zhi, He Hui-Jun, Shen Zhong-Wei, Wei Zhi-Yi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultra-short and ultra-intense laser is one of the hottest research spot of laser technology and strong field physics, due to its challenging and the frontier application research. As the key specification of ultrafast ultrahigh intensity laser pulse, the contrast ratio is very influential on the effect of laser-matter interaction. To perform the laser-matter interaction experiments at a high power level, the contrast is required to be as high as 1010 to prevent preplasma dynamics. To solve these problems, one has proposed many methods to improve the contrast of ultrafast laser, such as using the saturable absorbers, double chirped pulse amplification, plasma mirrors and the cross-polarized wave (XPW) generation. The XPW technology can not only enhance the contrast of the pulse by 3-4 orders of magnitude without introducing any space dispersion, but also extend the output spectrum to support shorter pulse duration. The XPW is a nonlinear filter technique in third-order nonlinear crystal with anisotropic susceptibility. Because of its simple and all-solid-state structure, the XPW technique has become one of the most effective methods to enhance the temporal pulse contrast and deliver shorter pulse duration in the field of high peak-power ultrafast lasers. This method has been used in many large laser facilities under construction or upgrades, such as the Apollon and ELI, the contrast ratio as high as 1010 has been achieved. It is known that the conversion efficiency and spectral characteristics of XPW have a strong dependence on the spatial and temporal magnitudes of the input driving pulse. In our experiment, it is found that the various changes of the driven pulse properties have different influences on the characteristics of XPW pulses. The relationship between the linear dispersion of driven pulse and temporal property of XPW is investigated theoretically. In addition, an experiment on verifying the theory is conducted by taking advantage of a programmable acousto-optic dispersion filter. The experimental results fit well to the theoretical results while some new phenomena emerge when the intensity in the BaF2 crystal reaches a saturation threshold. The spectral broadening capability of XPW becomes stronger and exceeds a theoretical upper limit. The pulse width can also be compressed to shorter than the theoretical limit. It is found that there are significant differences in spectral shape and conversion efficiency between the XPW signals by applying the opposite linear chirps to the driving pulse. A further analysis and theoretical explanation of these new phenomena are also presented.
      Corresponding author: Wei Zhi-Yi, zywei@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB922402), the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ120047), the National Natural Science Foundation of China (Grant No. 11434016), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB16030200).
    [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Gerstner E 2007 Nature 446 16

    [3]

    Mourou G, Korn G, Sandner W, Collier J K 2011 ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers (Berlin: THOSS Media GmbH) p118

    [4]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [5]

    Itatani J, Faure J, Nantel M, Mourou G, Watanabe S 1998 Opt. Commun. 148 70

    [6]

    Thaury C, Quere F, Geindre J P, Levy A, Ceccotti T, Monot P, Marjoribanks R 2007 Nat. Phys. 3 424

    [7]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Saltiel S M 2005 Opt. Lett. 30 920

    [8]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Kourtev S 2007 Appl. Phys. B 87 595

    [9]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 094214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 61 094214]

    [10]

    Ramirez L P, Papadopoulos D N, Pellegrina A, Georges P, Druon F, Monot P, Lopez-Martens R 2011 Opt. Express 19 93

    [11]

    Chalus O, Pellegrina A, Ricaud S, Chalus O, Pellegrina A, Matras G, Jougla P 2016 SPIE LASE. International Society for Optics and Photonics San Francisco, USA, February 15-18, 2016 p972611

    [12]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [13]

    Tournois P 1997 Opt. Commun. 140 245

    [14]

    Buberl T, Alismail A, Wang H, Karpowicz N, Fattahi H 2016 Opt. Express 24 10286

    [15]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [16]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York: Academic Press) p11

    [17]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Kourtev S 2007 Appl. Phys. B 87 595

    [18]

    Cambronero-Lpez F, Bao-Varela C, Ruiz C 2016 J. Opt. Soc. Am. B 33 1740

    [19]

    Iliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 219

    [20]

    Jullien A, Kourtev S, Albert O, Cheriaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [21]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese) [李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602]

    [22]

    Zhang Z 2011 Femtosecond Laser Technology (Beijing: Science Press) p17 (in Chinese) [张志刚 2011 飞秒激光技术 (北京: 科学出版社) 第17页]

  • [1]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [2]

    Gerstner E 2007 Nature 446 16

    [3]

    Mourou G, Korn G, Sandner W, Collier J K 2011 ELI-Extreme Light Infrastructure Science and Technology with Ultra-Intense Lasers (Berlin: THOSS Media GmbH) p118

    [4]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [5]

    Itatani J, Faure J, Nantel M, Mourou G, Watanabe S 1998 Opt. Commun. 148 70

    [6]

    Thaury C, Quere F, Geindre J P, Levy A, Ceccotti T, Monot P, Marjoribanks R 2007 Nat. Phys. 3 424

    [7]

    Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Saltiel S M 2005 Opt. Lett. 30 920

    [8]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Kourtev S 2007 Appl. Phys. B 87 595

    [9]

    Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 094214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 61 094214]

    [10]

    Ramirez L P, Papadopoulos D N, Pellegrina A, Georges P, Druon F, Monot P, Lopez-Martens R 2011 Opt. Express 19 93

    [11]

    Chalus O, Pellegrina A, Ricaud S, Chalus O, Pellegrina A, Matras G, Jougla P 2016 SPIE LASE. International Society for Optics and Photonics San Francisco, USA, February 15-18, 2016 p972611

    [12]

    Chvykov V, Rousseau P, Reed S, Kalinchenko G, Yanovsky V 2006 Opt. Lett. 31 1456

    [13]

    Tournois P 1997 Opt. Commun. 140 245

    [14]

    Buberl T, Alismail A, Wang H, Karpowicz N, Fattahi H 2016 Opt. Express 24 10286

    [15]

    Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025

    [16]

    Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (New York: Academic Press) p11

    [17]

    Jullien A, Canova L, Albert O, Boschetto D, Antonucci L, Cha Y H, Kourtev S 2007 Appl. Phys. B 87 595

    [18]

    Cambronero-Lpez F, Bao-Varela C, Ruiz C 2016 J. Opt. Soc. Am. B 33 1740

    [19]

    Iliev M, Meier A K, Greco M, Durfee C G 2015 Appl. Opt. 54 219

    [20]

    Jullien A, Kourtev S, Albert O, Cheriaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409

    [21]

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602 (in Chinese) [李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602]

    [22]

    Zhang Z 2011 Femtosecond Laser Technology (Beijing: Science Press) p17 (in Chinese) [张志刚 2011 飞秒激光技术 (北京: 科学出版社) 第17页]

  • [1] Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing. Dispersion management dual-pass self-phase modulation-enabled spectral selection. Acta Physica Sinica, 2023, 72(9): 094205. doi: 10.7498/aps.72.20230088
    [2] Zhang Xu, Wang Zhao-Hua, Wang Xian-Zhi, Li Jia-Wen, Li Jia-Jun, Zhao Guo-Dong, Wei Zhi-Yi. Pulse nonlinear compression generated 71.3 W femtosecond laser. Acta Physica Sinica, 2023, 72(14): 144205. doi: 10.7498/aps.72.20230746
    [3] Wang Di, Han Tao, Qian Huang-He, Liu Zhi-Yi, Ding Zhi-Hua. An absolute wavenumber calibration method based on characteristic spectral line and constrained fitting phase. Acta Physica Sinica, 2022, 71(21): 214203. doi: 10.7498/aps.71.20220314
    [4] Wang Di,  Han Tao,  Qian Huang-he,  Liu Zhi-yi,  Ding Zhi-hua. An Absolute Wavenumber Calibration Method based on Characteristic Spectral Line and Constrained Fitting Phase. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120220314
    [5] Zhang Teng, Li Da-Wei, Wang Tao, Cui Yong, Zhang Tian-Xiong, Wang Li, Zhang Jie, Xu Guang. Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal. Acta Physica Sinica, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [6] Liu Huan, Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun. Er-fiber femtosecond optical frequency comb covering visible light. Acta Physica Sinica, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [7] Li Gang, Liu Hong-Jie, Lu Feng, Wen Xian-Lun, He Ying-Ling, Zhang Fa-Qiang, Dai Zeng-Hai. Investigation on the influences of linear chirp with different input pulse intensities on BaF2 cross-polarized wave generation. Acta Physica Sinica, 2015, 64(2): 020602. doi: 10.7498/aps.64.020602
    [8] Mu Ting-Kui, Zhang Chun-Min, Ren Wen-Yi, Zhang Lin, Zhu Bao-Hui. Design and analysis of a polarization interference imaging spectrometer with expanded field of view. Acta Physica Sinica, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [9] Li Tian-Chu, Cao Shi-Ying, Meng Fei, Cai Yue, Fang Zhan-Jun, Wang Gui-Zhong, Zhang Zhi-Gang. Detection of carrier-envelope offset frequency in an Er-doped fiber femtosecond laser. Acta Physica Sinica, 2011, 60(9): 094208. doi: 10.7498/aps.60.094208
    [10] Cao Shi-Ying, Fang Zhan-Jun, Meng Fei, Wang Qiang, Li Tian-Chu. Ti:sapphire femtosecond comb with two spectral broadening parts. Acta Physica Sinica, 2011, 60(8): 080601. doi: 10.7498/aps.60.080601
    [11] Wen Jin-Hui, Liu Jun, Zhang Hui, Chen Jia-Long, Huang Zi-Zhu, Jiao Zhong-Xing, Lai Tian-Shu. Characterization of chirped pulses with modified-zero-additional-phase spectral phase interferometry for direct electric-field reconstruction. Acta Physica Sinica, 2010, 59(1): 370-375. doi: 10.7498/aps.59.370
    [12] Wu Hong, Wang Yan-Ling, Ding Liang-En. Spectrum broadening of ultrashort ultraviolet pulse in dual-color laser field. Acta Physica Sinica, 2010, 59(6): 3973-3978. doi: 10.7498/aps.59.3973
    [13] Liu Cheng, Wang Zhao-Hua, Li Wei-Chang, Liu Feng, Wei Zhi-Yi. Enhancement of contrast ratio in chirped pulse amplified laser system by cross-polarized wave generation. Acta Physica Sinica, 2010, 59(10): 7036-7040. doi: 10.7498/aps.59.7036
    [14] Cao Shi-Ying, Song Zhen-Ming, Qin Yu, Wang Qing-Yue, Zhang Zhi-Gang. Difference in filament and spectrum broadening induced by femtosecond pulses in argon gas with a temperature gradient at different positions. Acta Physica Sinica, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [15] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [16] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Probing the spectrum evolution of femtosecond pulse filament in argon gas with a hollow fiber. Acta Physica Sinica, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [17] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [18] Cao Shi-Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Dependence of spectrum broadening on inner diameter of capillary restricting the filamentation in high pressure gas. Acta Physica Sinica, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [19] Deng Yu-Qiang, Wu Zu-Bin, Chen Sheng-Hua, Chai Lu, Wang Qing-Yue, Zhang Zhi-Gang. Wavelet transform analysis for phase reconstruction of spectral shearing interferometry of ultrashort optical pulses. Acta Physica Sinica, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
    [20] Wang Peng, Wang Zhao-Hua, Wei Zhi-Yi, Zheng Jia-An, Sun Jing-Hua, Zhang Jie. Measurement of spectral phase of femotosecond laser pulse using SPIDER technique. Acta Physica Sinica, 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
Metrics
  • Abstract views:  5838
  • PDF Downloads:  138
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2017
  • Accepted Date:  30 March 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map