Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational study of two-body and three-body dissociation of CH3I2+

Sun Qi-Xiang Yan Bing

Citation:

Computational study of two-body and three-body dissociation of CH3I2+

Sun Qi-Xiang, Yan Bing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As one of the simplest alkyl halides, methyl iodide is extensively investigated in the research fields of the photodissociation and photoionization. In the experimental investigations of ionization and dissociation, many molecular fragments, such as Iq+(q3), CHn+(n3), H+, etc., are observed in the mass spectrum of CH3I. While the mechanisms for dissociation and ionization are not completely understood. As the doubly-ionized product, CH3I2+ exhibits different isomer structures and isomerization reactions. The dissociation channels of different isomers in combination with the corresponding transition states of CH3I2+ are helpful for better understanding the dissociation and ionization dynamics of CH3I in an intense laser field. In our present work, the dissociation channels of CH3I2+ are investigated by the density functional and couple cluster theory. The geometries and energies corresponding to the local isomers and the transition states of CH3I, CH3I+ and CH3I2+ are computed. The first and second ionization energies we measured are in good agreement with experimental values. Our computational results show that the ground state of the CH3I2+ is a triplet one with 3A2 symmetry. Totally 11 two-body and 15 three-body dissociation channels of the CH3I2+ on both the lowest singlet and the lowest triplet potential energy surfaces are computed and analyzed in detail. Our computations indicate that seven two-body dissociations channels, i.e., six singlet and one triplet ones, are exergonic, in which CH3I2+(1A')CH2++HI+(4A1) is the easiest process to achieve; four exergonic three-body dissociation channels with three on singlet potential energy surface and one on triplet potential energy surface are found. The possible mechanisms for producing the dissociative ionized fragments observed in experiments, CH3+, H+, and I+, are presented; furthermore, the dissociation channels generating other ions not observed in experiments, such as H3+ et al, are also given for further experimental study. The detailed information about dissociation channels and fragments is summarized for further experimental comparisons. In the computations, we find that the density functional theory and CCSD(T) methods give different energy orders for a few dissociation potential energy surfaces; and in this work, the analysis and discussion are performed based on the CCSD(T) results. Our computations indicate that the dissociation channels on singlet and triplet potential energy surface exhibit different behaviors.
      Corresponding author: Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574114), the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC), and the Scientific Research Foundation of Jilin Agricultural University, China.
    [1]

    Cheng L 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程丽 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [2]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫 2008 57 4130]

    [3]

    Liu H T, Yang Z, Gao Z J 2007 J. Chem. Phys. 126 044316

    [4]

    Goss S P, Mcgilvery D C, Morrison J D, Smith d L 1981 J. Chem. Phys. 75 757

    [5]

    Schneider W, Thiel W 1989 Chem. Phys. Lett. 157 367

    [6]

    Continetti R E, Balko B A, Lee Y T 1988 J. Chem. Phys. 89 3383

    [7]

    Mintz D M, Baer T 1976 J. Chem. Phys. 65 2407

    [8]

    Lee M, Kima M S 2007 J. Chem. Phys. 127 124313

    [9]

    Sparks R K, Shobotake K, Carlson L R, Lee Y T 1981 J. Chem. Phys. 75 3838

    [10]

    Zhong D, Cheng P Y, Zewail A H 1996 J. Chem. Phys. 105 7864

    [11]

    Imre D, KinseY J L, Sinha A, Krenos J 1988 J. Phys. Chem. 89 6667

    [12]

    Sundberg R L, Imre D, Hale M O, Kinsey J L, Coalson R D 1986 J. Phys. Chem. 90 5001

    [13]

    Johnson B R, Kittrell C, Kelly P B, KinseY J L 1996 J. Phys. Chem. 100 7743

    [14]

    Amatatsu Y, Yabushita S, Morokuma K 1996 J. Chem. Phys. 104 9783

    [15]

    Lehr L, Weinkauf R, Schlag E W 2001 Int. J. Mass. Spectrom. 206 191

    [16]

    Walter K, Weinkauf R, Boesl U, Schlag E W 1988 J. Chem. Phys. 89 1914

    [17]

    Sharma P, Vatsa R K, Rajasekhar B N, Das N C, Ghanty T K, Kulshreshtha S K 2005 Rapid Commun. Mass. Spectrom 19 1522

    [18]

    Zhang B L, Wang X Y, Lou N Q, Zhang B 2001 J. Spec. Acta Part A 57 1759

    [19]

    Chupka W A, Colson S D, Seaver M S, Wooddard A M 1983 Chem. Phys. Lett. 95 171

    [20]

    Shapiro M, Bersohn R 1980 J. Chem. Phys. 73 3810

    [21]

    Karlsson L, Jadmy R, Mattson L, Chau F T, Siegbahn K 1977 Phys. Scripta 16 225

    [22]

    Landolt H, Brnstein R, Fischer H, Madelung O, Deuschle G 1987 Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Vol. 17) (Berlin Heidelberg: Springer-Verlag)

    [23]

    Ragle J L, Stenhouse I A, Frost D C, Mcdowell C A 1970 J. Chem. Phys. 53 178

    [24]

    Randic M, Trinajstic N 1992 J. Chem. Edu. 69 701

    [25]

    Griffiths W J, Harris F M, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [26]

    Yabushita S, Morokuma K 1988 Chem. Phys. Lett. 153 517

    [27]

    Kaziannis S, Siozos P, Kosmidis C 2005 Chem. Phys. Lett. 401 115

    [28]

    Dujardin G, Hellner L, Winkoun D, Besnard M 1986 J. Chem. Phys. 105 291

    [29]

    Guo H 1992 J. Chem. Phys. 96 2731

    [30]

    Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S, Loarte A 2008 Plasma Phys. Control. Fusion 50 103001

    [31]

    Locht R, Dehareng D, Hottomann K, Kaziannis H, Jochims W, Hbaumgartel L B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105101

    [32]

    Li L, Kong X H, Zhang S D, Liu C H, Sun Z Q, Liu J P, Zhang L F, Qiao G 2007 J. Atom. Mol. Phys. 3 443 (in Chinese) [李丽, 孔祥和, 张树东, 刘存海, 孙志青, 刘建苹, 张良芳, 乔光 2007 原子与分子 3 443]

    [33]

    Griffiths W J, Franck M, Harris, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [34]

    Ajitha D, Wierzbowska M, Lindh R, Malmqvist P A 2004 J. Chem. Phys. 121 5761

    [35]

    Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N 2007 J. Chem. Phys 126 234102

    [36]

    Adjeddine M, Flament J P, Teichteil C 1987 Chem. Phys. 118 45

    [37]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [38]

    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H 1993 Mol. Phys. 80 1431

    [39]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

  • [1]

    Cheng L 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [程丽 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [2]

    Li R, Yan B, Zhao S T, Guo Q Q, Lian K Y, Tian C J, Pan S F 2008 Acta Phys. Sin. 57 4130 (in Chinese) [李瑞, 闫冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫 2008 57 4130]

    [3]

    Liu H T, Yang Z, Gao Z J 2007 J. Chem. Phys. 126 044316

    [4]

    Goss S P, Mcgilvery D C, Morrison J D, Smith d L 1981 J. Chem. Phys. 75 757

    [5]

    Schneider W, Thiel W 1989 Chem. Phys. Lett. 157 367

    [6]

    Continetti R E, Balko B A, Lee Y T 1988 J. Chem. Phys. 89 3383

    [7]

    Mintz D M, Baer T 1976 J. Chem. Phys. 65 2407

    [8]

    Lee M, Kima M S 2007 J. Chem. Phys. 127 124313

    [9]

    Sparks R K, Shobotake K, Carlson L R, Lee Y T 1981 J. Chem. Phys. 75 3838

    [10]

    Zhong D, Cheng P Y, Zewail A H 1996 J. Chem. Phys. 105 7864

    [11]

    Imre D, KinseY J L, Sinha A, Krenos J 1988 J. Phys. Chem. 89 6667

    [12]

    Sundberg R L, Imre D, Hale M O, Kinsey J L, Coalson R D 1986 J. Phys. Chem. 90 5001

    [13]

    Johnson B R, Kittrell C, Kelly P B, KinseY J L 1996 J. Phys. Chem. 100 7743

    [14]

    Amatatsu Y, Yabushita S, Morokuma K 1996 J. Chem. Phys. 104 9783

    [15]

    Lehr L, Weinkauf R, Schlag E W 2001 Int. J. Mass. Spectrom. 206 191

    [16]

    Walter K, Weinkauf R, Boesl U, Schlag E W 1988 J. Chem. Phys. 89 1914

    [17]

    Sharma P, Vatsa R K, Rajasekhar B N, Das N C, Ghanty T K, Kulshreshtha S K 2005 Rapid Commun. Mass. Spectrom 19 1522

    [18]

    Zhang B L, Wang X Y, Lou N Q, Zhang B 2001 J. Spec. Acta Part A 57 1759

    [19]

    Chupka W A, Colson S D, Seaver M S, Wooddard A M 1983 Chem. Phys. Lett. 95 171

    [20]

    Shapiro M, Bersohn R 1980 J. Chem. Phys. 73 3810

    [21]

    Karlsson L, Jadmy R, Mattson L, Chau F T, Siegbahn K 1977 Phys. Scripta 16 225

    [22]

    Landolt H, Brnstein R, Fischer H, Madelung O, Deuschle G 1987 Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology (Vol. 17) (Berlin Heidelberg: Springer-Verlag)

    [23]

    Ragle J L, Stenhouse I A, Frost D C, Mcdowell C A 1970 J. Chem. Phys. 53 178

    [24]

    Randic M, Trinajstic N 1992 J. Chem. Edu. 69 701

    [25]

    Griffiths W J, Harris F M, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [26]

    Yabushita S, Morokuma K 1988 Chem. Phys. Lett. 153 517

    [27]

    Kaziannis S, Siozos P, Kosmidis C 2005 Chem. Phys. Lett. 401 115

    [28]

    Dujardin G, Hellner L, Winkoun D, Besnard M 1986 J. Chem. Phys. 105 291

    [29]

    Guo H 1992 J. Chem. Phys. 96 2731

    [30]

    Roth J, Tsitrone E, Loarer T, Philipps V, Brezinsek S, Loarte A 2008 Plasma Phys. Control. Fusion 50 103001

    [31]

    Locht R, Dehareng D, Hottomann K, Kaziannis H, Jochims W, Hbaumgartel L B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105101

    [32]

    Li L, Kong X H, Zhang S D, Liu C H, Sun Z Q, Liu J P, Zhang L F, Qiao G 2007 J. Atom. Mol. Phys. 3 443 (in Chinese) [李丽, 孔祥和, 张树东, 刘存海, 孙志青, 刘建苹, 张良芳, 乔光 2007 原子与分子 3 443]

    [33]

    Griffiths W J, Franck M, Harris, Parry D E 1990 J. Chem. Soc. Faraday Trans. 86 2801

    [34]

    Ajitha D, Wierzbowska M, Lindh R, Malmqvist P A 2004 J. Chem. Phys. 121 5761

    [35]

    Alekseyev A B, Liebermann H P, Buenker R J, Yurchenko S N 2007 J. Chem. Phys 126 234102

    [36]

    Adjeddine M, Flament J P, Teichteil C 1987 Chem. Phys. 118 45

    [37]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [38]

    Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H 1993 Mol. Phys. 80 1431

    [39]

    Martin J M L, Sundermann A 2001 J. Chem. Phys. 114 3408

  • [1] Li Jun-Wei, Jia Wei-Min, Wei Ya-Xuan, Lü Sha-Sha, Wang Jin-Tao, Li Zheng-Cao. First principles study of H2 dissociation, H atom and O atom diffusion on Mo doped γ-U (100) surface. Acta Physica Sinica, 2023, 72(14): 146401. doi: 10.7498/aps.72.20230033
    [2] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] Shi Bin, Yuan Li, Tang Tian-Yu, Lu Li-Min, Zhao Xian-Hao, Wei Xiao-Nan, Tang Yan-Lin. Spectral analysis and density functional theory study of tert-butylhydroquinone. Acta Physica Sinica, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [5] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [7] Zhang Feng-Chun, Li Chun-Fu, Zhang Cong-Lei, Ran Zeng-Ling. Surface absorptions of H2S, HS and S on Fe(111) investigated by density functional theory. Acta Physica Sinica, 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [8] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [9] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [11] Zhang Zhi-Long, Chen Yu-Hong, Ren Bao-Xing, Zhang Cai-Rong, Du Rui, Wang Wei-Chao. Density functional theory study on the structure and properties of (HMgN3)n(n=15) clusters. Acta Physica Sinica, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] Li Xue-Mei, Zhang Jian-Ping. Theoretical study on the structure, spectra and thermodynamic property of 5-(2-aryloxy-methylbenzimidazole-1-carbadehyde)-1,3,4-oxadiazole-2-thione. Acta Physica Sinica, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [13] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [14] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [15] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Pu Zhong-Sheng. Density functional theory study of the structures and properties of (Li3N)n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [16] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [17] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [18] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Tan Ming-Qiu, Tao Xiang-Ming, Xu Xiao-Jun, Cai Jian-Qiu. Density functional theory study on the electronic structure of UAl3 a nd USn3. Acta Physica Sinica, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
Metrics
  • Abstract views:  6261
  • PDF Downloads:  173
  • Cited By: 0
Publishing process
  • Received Date:  31 October 2016
  • Accepted Date:  01 February 2017
  • Published Online:  05 May 2017

/

返回文章
返回
Baidu
map