-
本文采用基于自旋极化的密度泛函理论系统研究了ConCm (n=15; m=1,2)团簇的几何结构和电子结构特性. 将ConC (n=25)团簇中的一个Co替换为C原子, 个体的基态几何结构发生明显变化; 在ConC2 (n=15)团簇的生长序列中, 发现从n=3开始团簇中的两个C原子有彼此分离分布的趋势, 我们分析, 这是Co金属能够维持单壁碳纳米管(SCNTs)保持开口生长, 成为非常有效的一种催化剂的重要原因. 同时, 将ConC (n=25)团簇中添加一个Co原子后系统的总磁矩出现大幅下降的趋势, 但仍保持奇偶交替的规律. 通过比较中性及带电的ConC以及ConC2 (n=15)团簇的碎裂能, 本工作发现: 由实验获取的SCNTs应均为带正电的体系, 这一结论与已有的实验模型拟合得很好.The geometrical and electronic structures of ConCm (n=15, m=1,2) clusters are investigated using spin-polarized DFT calculations. ConC (n=25) and ConC2 (n=14) clusters of their ground-state structures different. From n=3, two C atoms are located apart from each other, we think, it is an important reason for Co catalyze C in to single walled carbon nanotubes effectively. The total magnetic moment of ConC2 (n=25) are lower than those of ConC (n=25) clusters, and they both alternated with odd and even numbers. By comparing the fragmentation energies of neutral and charged ConC and ConC2 (n=15) clusters, we conclude that the single walled carbon nanotubes obtained in experiment is electropositive. This conclusion is in good agreement with that from expersimental model
-
Keywords:
- Co-C cluster /
- density-functional theory /
- electronic structures
[1] Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 073401
[2] Guo B C, Kerns K P, Castleman A W 1992 Science 255 1411
[3] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Science and Technology Press pp10-30 (in Chinese) [王广厚 2003团簇物理学 (上海: 上海科学技术出版社)第10—30页]
[4] Sondón T, Guevara J 2004 Physica B 354 303
[5] Yao J G, Wang X W, Wang Y X, Jin Q, Luo Y H 2008 Acta Phys. Sin. 57 4166 (in Chinese) [姚建刚, 王献伟, 王渊旭, 井群, 罗有华 2008 57 4166]
[6] Tian F Y, Wang Y X, Jin Q, Tian K, Luo Y H 2008 Acta Phys. Sin. 57 1648 (in Chinese) [田付阳, 王渊旭, 井群, 田凯, 罗有华 2008 57 1648]
[7] Wang H Y, Li X B, Tang Y J, Wang C Y, Zhu Z H 2005 Acta Phys. Sin. 54 3565 (in Chinese) [王红艳, 李喜波, 唐永建, 谌晓洪, 王朝阳, 朱正和 2005 54 3565]
[8] Mainardi D S, Balbuena P B 2003 J. Phys. Chem. A 107 10370
[9] Fan J, Wang L S 1994 J. Phys. Chem. 98 11814
[10] Li X, Wang L S 1999 J. Chem. Phys. 111 8389
[11] Wang L S, Li X 2000J. Chem. Phys. 112 3602
[12] Tono K, Terasaki A, Ohta T, Kondow T 2002 J. Chem. Phys. 117 7010
[13] Arbuznikov A V, Hendrickx M, Vanquickenborne L G 1999 Chem. Phys. Lett. 310 515
[14] Arbuznikov A V, Hendrickx M 2000 Chem. Phys. Lett. 320 575
[15] Gutsev G L, Bauschlicher C W 2003 Chem. Phys. 291 27
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Schlegel H B 1982 J. Comput. Chem. 3 214
[18] Miguel C, Christine J, Dennis R S 1997 Chem. Phys. Lett. 271 133
[19] Duan H M, Zheng Q Q 2001 Phys. Lett. A 280 333
[20] Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2006 Phys. Lett. A 358 289
[21] Ding F, Larsson P, Larsson J A, Ahuja R, Duan H, Rosén A, Bolton K 2008 Nano. Lett. 8 463
[22] Bulgakova N M, Bulgakov A V, Svensson J, Campbell E E B 2006 Appl. Phys. A 85 109
[23] Zhang Z X, Cao B B, Duan H M 2008 J. Mol. Struc (Teochem) 863 22
[24] Zhang B, Chen C, Zhang J 2011 J. At. Mol. Phys. 28 643 (in Chinese) [张蓓, 陈楚, 张军 2011 原子与分子 28 643]
-
[1] Ding J W, Yan X H, Cao J X 2002 Phys. Rev. B 66 073401
[2] Guo B C, Kerns K P, Castleman A W 1992 Science 255 1411
[3] Wang G H 2003 Cluster Physics (Shanghai: Shanghai Science and Technology Press pp10-30 (in Chinese) [王广厚 2003团簇物理学 (上海: 上海科学技术出版社)第10—30页]
[4] Sondón T, Guevara J 2004 Physica B 354 303
[5] Yao J G, Wang X W, Wang Y X, Jin Q, Luo Y H 2008 Acta Phys. Sin. 57 4166 (in Chinese) [姚建刚, 王献伟, 王渊旭, 井群, 罗有华 2008 57 4166]
[6] Tian F Y, Wang Y X, Jin Q, Tian K, Luo Y H 2008 Acta Phys. Sin. 57 1648 (in Chinese) [田付阳, 王渊旭, 井群, 田凯, 罗有华 2008 57 1648]
[7] Wang H Y, Li X B, Tang Y J, Wang C Y, Zhu Z H 2005 Acta Phys. Sin. 54 3565 (in Chinese) [王红艳, 李喜波, 唐永建, 谌晓洪, 王朝阳, 朱正和 2005 54 3565]
[8] Mainardi D S, Balbuena P B 2003 J. Phys. Chem. A 107 10370
[9] Fan J, Wang L S 1994 J. Phys. Chem. 98 11814
[10] Li X, Wang L S 1999 J. Chem. Phys. 111 8389
[11] Wang L S, Li X 2000J. Chem. Phys. 112 3602
[12] Tono K, Terasaki A, Ohta T, Kondow T 2002 J. Chem. Phys. 117 7010
[13] Arbuznikov A V, Hendrickx M, Vanquickenborne L G 1999 Chem. Phys. Lett. 310 515
[14] Arbuznikov A V, Hendrickx M 2000 Chem. Phys. Lett. 320 575
[15] Gutsev G L, Bauschlicher C W 2003 Chem. Phys. 291 27
[16] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Schlegel H B 1982 J. Comput. Chem. 3 214
[18] Miguel C, Christine J, Dennis R S 1997 Chem. Phys. Lett. 271 133
[19] Duan H M, Zheng Q Q 2001 Phys. Lett. A 280 333
[20] Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2006 Phys. Lett. A 358 289
[21] Ding F, Larsson P, Larsson J A, Ahuja R, Duan H, Rosén A, Bolton K 2008 Nano. Lett. 8 463
[22] Bulgakova N M, Bulgakov A V, Svensson J, Campbell E E B 2006 Appl. Phys. A 85 109
[23] Zhang Z X, Cao B B, Duan H M 2008 J. Mol. Struc (Teochem) 863 22
[24] Zhang B, Chen C, Zhang J 2011 J. At. Mol. Phys. 28 643 (in Chinese) [张蓓, 陈楚, 张军 2011 原子与分子 28 643]
计量
- 文章访问数: 8157
- PDF下载量: 477
- 被引次数: 0