-
In this paper, a theoretical analysis model is proposed for the linear growth of the Richtmyer-Meshkov instability in elastoplastic solid medium-vacuum interface under the explosion shock wave loading. The analysis of the dynamic evolution of small perturbations shows that after the initial phase inversion, some perturbations would stop growing after they have reached their maximum amplitude, some others would continue to grow and then form jetting from the solid-vacuum interfaces. Numerical simulations show excellent agreement with the experimental results of explosively-driven Richtmyer-Meshkov instability in the sample of copper. The effects of two physical factors on the maximum amplitude of spikes are also studied numerically. The first physical factor is the initial configuration of the perturbation, which is expressed as the time values of the initial wave number and initial amplitude. With increasing the value of the initial configuration, the maximum amplitudes of the spikes would become greater while the growth of perturbations is suppressed. On the other hand, the maximum amplitudes of spikes would become smaller in the solid which has a higher yield strength when the initial configuration keeps unchanged. Further investigations show that the boundary of the stage division between the stable growth and the unstable growth is revealed by a combination parameter form of the two physical factors, which is expressed as the ratio of initial configuration to yield strength. In the stable stage, the linear relation between the non-dimensional maximum amplitude and the non-dimensional maximum growth rate of the spikes is fitted with the coefficient value 0.30, which is very close to 0.29, a theoretical prediction based on the Newton's second law analysis. Considering the shock Hugoniot relations in the elastoplastic medium and the maximum growth rate equation of the Richtmyer-Meshkov instability in ideal fluid, the linear model is improved to add the effects of the loading shockwave pressure and the compression acoustic impedance of the material on the amplitude growth of the spike to the analytical model proposed by the former researchers. Extensive numerical simulations are performed to show that the linear model could accurately describe the growth factor of the spikes in the stable cases in different metal materials, such as copper, aluminum, and stain-less steels. In the numerical analysis of the scope of application of the linear model, a rough estimation of the stage division boundary between the stable and unstable growth is given as 0.8 GPa-1. When the ratio of initial configuration to yield strength is lower than the division boundary, the perturbation growth would be stable and the linear model could describe the growth law of the spikes.
-
Keywords:
- perturbation growth /
- elastoplastic solid /
- properties of materials
[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
[2] Meshkov E E 1969 Sovit. Fluid Dyn. 4 151
[3] Mikaelian K O 2013 Phys. Rev. E 87 031003
[4] Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445
[5] Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301
[6] Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313
[7] Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401
[8] Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305
[9] Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018
[10] Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501
[11] Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60
[12] Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519
[13] Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502
[14] Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903
[15] Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]
[16] Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838
[17] Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]
[18] Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812
[19] Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501
[20] Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515
[21] Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502
[22] Wouchuk J G 2001 Phys. Rev. E 63 056303
[23] Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]
[24] Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]
[25] Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]
[26] Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287
-
[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297
[2] Meshkov E E 1969 Sovit. Fluid Dyn. 4 151
[3] Mikaelian K O 2013 Phys. Rev. E 87 031003
[4] Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445
[5] Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301
[6] Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313
[7] Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401
[8] Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305
[9] Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018
[10] Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501
[11] Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60
[12] Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519
[13] Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502
[14] Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903
[15] Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]
[16] Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838
[17] Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]
[18] Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812
[19] Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501
[20] Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515
[21] Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502
[22] Wouchuk J G 2001 Phys. Rev. E 63 056303
[23] Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]
[24] Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]
[25] Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]
[26] Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287
Catalog
Metrics
- Abstract views: 5592
- PDF Downloads: 226
- Cited By: 0