Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading

Yin Jian-Wei Pan Hao Wu Zi-Hui Hao Peng-Cheng Hu Xiao-Mian

Citation:

A growth study of the Richtmyer-Meshkov flow in the elastoplastic solids under explosive loading

Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Hu Xiao-Mian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, a theoretical analysis model is proposed for the linear growth of the Richtmyer-Meshkov instability in elastoplastic solid medium-vacuum interface under the explosion shock wave loading. The analysis of the dynamic evolution of small perturbations shows that after the initial phase inversion, some perturbations would stop growing after they have reached their maximum amplitude, some others would continue to grow and then form jetting from the solid-vacuum interfaces. Numerical simulations show excellent agreement with the experimental results of explosively-driven Richtmyer-Meshkov instability in the sample of copper. The effects of two physical factors on the maximum amplitude of spikes are also studied numerically. The first physical factor is the initial configuration of the perturbation, which is expressed as the time values of the initial wave number and initial amplitude. With increasing the value of the initial configuration, the maximum amplitudes of the spikes would become greater while the growth of perturbations is suppressed. On the other hand, the maximum amplitudes of spikes would become smaller in the solid which has a higher yield strength when the initial configuration keeps unchanged. Further investigations show that the boundary of the stage division between the stable growth and the unstable growth is revealed by a combination parameter form of the two physical factors, which is expressed as the ratio of initial configuration to yield strength. In the stable stage, the linear relation between the non-dimensional maximum amplitude and the non-dimensional maximum growth rate of the spikes is fitted with the coefficient value 0.30, which is very close to 0.29, a theoretical prediction based on the Newton's second law analysis. Considering the shock Hugoniot relations in the elastoplastic medium and the maximum growth rate equation of the Richtmyer-Meshkov instability in ideal fluid, the linear model is improved to add the effects of the loading shockwave pressure and the compression acoustic impedance of the material on the amplitude growth of the spike to the analytical model proposed by the former researchers. Extensive numerical simulations are performed to show that the linear model could accurately describe the growth factor of the spikes in the stable cases in different metal materials, such as copper, aluminum, and stain-less steels. In the numerical analysis of the scope of application of the linear model, a rough estimation of the stage division boundary between the stable and unstable growth is given as 0.8 GPa-1. When the ratio of initial configuration to yield strength is lower than the division boundary, the perturbation growth would be stable and the linear model could describe the growth law of the spikes.
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272064).
    [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [3]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [4]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [5]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301

    [6]

    Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313

    [7]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [8]

    Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305

    [9]

    Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018

    [10]

    Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501

    [11]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [12]

    Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [13]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [14]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [15]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [16]

    Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838

    [17]

    Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]

    [18]

    Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812

    [19]

    Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501

    [20]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515

    [21]

    Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502

    [22]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [23]

    Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]

    [24]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]

    [25]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]

    [26]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

  • [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [3]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [4]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [5]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2006 Phys. Rev. E 74 037301

    [6]

    Piriz A R, Lopez Cela J J, Cortazar O D, Tahir N A, Hoffmann D H H 2005 Phys. Rev. E 72 056313

    [7]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [8]

    Piriz A R, Lopez Cela J J, Tahir N A 2009 Phys. Rev. E 80 046305

    [9]

    Lopez Ortega A, Lombardini M, Pullin D I, Meiron D I 2014 Phys. Rev. E 89 033018

    [10]

    Remington B A, Rudd E R, Wark J S 2015 Phys. Plasmas 22 090501

    [11]

    Buttler W T, Oro D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [12]

    Buttler W T, Oro D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [13]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [14]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [15]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [16]

    Robinson A C, Swegle J W, 1989 J. Appl. Phys. 66 2838

    [17]

    Zhu J S, Hu X M, Wang P, Chen J, Xu A G 2010 Adv. Mech. 40 400 (in Chinese)[朱建士, 胡晓棉, 王裴, 陈军, 许爱国2010力学进展40 400]

    [18]

    Vogler T J, Chhabildas L C 2006 Int. J. Impact Engng. 33 812

    [19]

    Barton N R, Bernier J V, Becker R, Arsenlis A, Cavallo R, Marian J, Rhee M, Park H S, Remington B A, Olson R T 2011 J. Appl. Phys. 109 073501

    [20]

    Smith R F, Eggert J H, Rudd R E, Swift D C, Blome C A, Collins G W 2011 J. Appl. Phys. 110 123515

    [21]

    Park H S, Rudd R E, Cavallo R M, Barton N R, Arsenlis A, Belof J L, Blobaum K J M, El-dasher B S, Florando J N, Huntington C M, Maddox B R, May M J, Plechaty C, Prisbrey S T, Remington B A, Wallace R J, Wehrenberg C E, Wilson M J, Comley A J, Giraldex E, Nikroo A, Farrell M, Randall G, Gray III G T 2015 Phys. Rev. Lett. 114 065502

    [22]

    Wouchuk J G 2001 Phys. Rev. E 63 056303

    [23]

    Pan H, Wu Z H, Hu X M, Yang K 2013 Chin. J. High Pressure Phys. 27 778 (in Chinese)[潘昊, 吴子辉, 胡晓棉, 杨堃2013高压 27 778]

    [24]

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese)[潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强2012 61 206401]

    [25]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖, 谭华, 胡建波, 戴诚达, 陈大年, 王焕然2008 57 2352]

    [26]

    Colvin J D, Legrand M, Remington B A, Schurtz G, Weber S V 2003 J. Appl. Phys. 93 5287

  • [1] Xu Bo, Tian Yong-Jun. Research progress and prospects of plastic thermoelectric materials. Acta Physica Sinica, 2024, 73(20): 206201. doi: 10.7498/aps.73.20241129
    [2] Sun Bei-Bei, Ye Wen-Hua, Zhang Wei-Yan. Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces. Acta Physica Sinica, 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [3] Li Bi-Yong, Peng Jian-Xiang, Gu Yan, He Hong-Liang. Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading. Acta Physica Sinica, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [4] Li Lin-Li,  Xue Chun-Xia. Chaotic motion of piezoelectric material hyperbolic shell under thermoelastic coupling. Acta Physica Sinica, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [5] Sun Xiao-Chen, He Cheng, Lu Ming-Hui, Chen Yan-Feng. Topological properties of artificial bandgap materials. Acta Physica Sinica, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [6] Liu Qing-You, Luo Xu, Zhu Hai-Yan, Han Yi-Wei, Liu Jian-Xun. Modeling plastic deformation effect on the hysteresis loops of ferromagnetic materials based on modified Jiles-Atherton model. Acta Physica Sinica, 2017, 66(10): 107501. doi: 10.7498/aps.66.107501
    [7] Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Duan Zhuo-Ping, Hu Xiao-Mian. Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface. Acta Physica Sinica, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [8] Wang Hong-Ming, Li Pei-Si, Zheng Rui, Li Gui-Rong, Yuan Xue-Ting. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites. Acta Physica Sinica, 2015, 64(8): 087104. doi: 10.7498/aps.64.087104
    [9] Jiang Tai-Long, Yu Yin, Huan Qiang, Li Yong-Qiang, He Hong-Liang. Shock plasticity design of brittle material. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [10] Yang Hai-Bin, Li Yue, Zhao Hong-Gang, Wen Ji-Hong, Wen Xi-Sen. Low-frequency acoustic absorption mechanism of a viscoelastic layer with resonant cylindrical scatterers. Acta Physica Sinica, 2013, 62(15): 154301. doi: 10.7498/aps.62.154301
    [11] Yang Yan-Nan, Wang Xin-Qiang, Lu Li-Wu, Huang Cheng-Cheng, Xu Fu-Jun, Shen Bo. Surface states of InAlN film grown by MOCVD. Acta Physica Sinica, 2013, 62(17): 177302. doi: 10.7498/aps.62.177302
    [12] Zheng He-Peng, Jiang Yi-Min, Peng Zheng, Fu Li-Ping. Properties of sound waves in granular matter analyzed by an elastic potential model. Acta Physica Sinica, 2012, 61(21): 214502. doi: 10.7498/aps.61.214502
    [13] Zhang Feng-Guo, Zhou Hong-Qiang, Zhang Guang-Cai, Hong Tao. Inertial and elastic-plastic effect on spallationdamage of ductile metals. Acta Physica Sinica, 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [14] Zhang Hong-Liang, Lei Hai-Le, Tang Yong-Jian, Luo Jiang-Shan, Li Kai, Deng Xiao-Chen. Thermal capacity of nanocrystalline copper at low temperatures. Acta Physica Sinica, 2010, 59(1): 471-475. doi: 10.7498/aps.59.471
    [15] Liu Dong-Mei, Han Peng. Wave localization in one-dimensional periodic-on-average disordered system composed of single-negative metamaterials. Acta Physica Sinica, 2010, 59(10): 7066-7072. doi: 10.7498/aps.59.7066
    [16] Chen Bin, Peng Xiang-He, Fan Jing-Hong, Sun Shi-Tao, Luo Ji. A thermo-elastoplastic constitutive equation including phase transformation and its applications. Acta Physica Sinica, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [17] Wang Can-Jun, Wei Qun, Zheng Bao-Bing, Mei Dong-Cheng. Transient properties of a tumor cell growth system driven by color Gaussian noises: Mean first-passage time. Acta Physica Sinica, 2008, 57(3): 1375-1380. doi: 10.7498/aps.57.1375
    [18] Jia You-Hua, Ji Xian-Ming, Yin Jian-Ping. Research on several parameters influencing on laser cooling of solids. Acta Physica Sinica, 2007, 56(3): 1770-1774. doi: 10.7498/aps.56.1770
    [19] Huang Jin-Song, Dong Xun, Liu Xiang-Lin, Xu Zhong-Ying, Ge Wei-Kun. A study of the growth and optical properties of AlInGaN alloys. Acta Physica Sinica, 2003, 52(10): 2632-2637. doi: 10.7498/aps.52.2632
    [20] Tao Wei-Dong, Xia Hai-Peng, Bai Gui-Ru, Dong Jian-Feng, Nie Qiu-Hua. . Acta Physica Sinica, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
Metrics
  • Abstract views:  5592
  • PDF Downloads:  226
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2016
  • Accepted Date:  06 January 2017
  • Published Online:  05 April 2017

/

返回文章
返回
Baidu
map