-
近年来, 以Ag2S为代表的塑性热电材料研究取得显著进展. 该类材料因具有较低的滑移势垒和较高的解理能, 表现出优异的室温塑性, 并可通过固溶优化实现塑性和热电性能的协同提升. 最新研究表明, Mg3Bi2基单晶材料在塑性变形能力和室温热电性能方面综合表现更佳. 微观结构表征及理论计算分析揭示了位错滑移在Mg3Bi2单晶塑性变形过程中的关键作用, 特别是多个滑移系表现出较低的滑移势垒. 这些发现不仅深化了对塑性热电材料微观变形机制的理解, 还为优化材料性能和开发新型柔性热电器件奠定了重要基础. 未来将这些材料应用于实际器件仍面临热稳定性、化学稳定性和界面接触等挑战, 这些问题的解决将推动塑性热电材料在柔性电子领域的应用.In recent years, significant progress has been made in the research of plastic thermoelectric materials, for example, Ag2S-based alloys. These materials exhibit excellent room-temperature plasticity due to their low slipping barrier energy and high cleavage energy, with synergistic enhancements in plasticity and thermoelectric properties achievable through alloying and doping strategies. The latest study on Mg3Bi2-based single crystals demonstrated superior performance in terms of plastic deformation capability and room-temperature thermoelectric properties. Microstructural characterization and theoretical calculation have revealed the crucial role of dislocation glide in the plastic deformation process of Mg3Bi2 single crystals, especially, the low slipping barrier energy observed in multiple slip systems. Importantly, the Te-doped single-crystalline Mg3Bi2 shows a power factor of ~55 μW cm–1 K–2 and ZT of ~0.65 at room temperature along the ab plane, which exceed those of the existing ductile thermoelectric materials. These findings not only deepen the understanding of microscopic deformation mechanisms in plastic thermoelectric materials but also establish an important foundation for optimizing material properties and developing novel flexible thermoelectric devices. Future applications of these materials in practical devices still face challenges in thermal stability, chemical stability, and interfacial contact. Addressing these issues will promote the application of plastic thermoelectric materials in the field of flexible electronics.
-
Keywords:
- plastic thermoelectric materials /
- flexible thermoelectric devices /
- Ag2S /
- Mg3Bi2
[1] He J, Tritt T M 2017 Science 357 eaak9997Google Scholar
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[3] Wu Z, Zhang S, Liu Z, Mu E, Hu Z 2022 Nano Energy 91 106692Google Scholar
[4] Liu Z, Chen G 2020 Adv. Mater. Technol. 5 2000049Google Scholar
[5] Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2019 Adv. Funct. Mater. 29 1805924Google Scholar
[6] Wei T R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, Qiu P, Shan Z, Jiang J, Li R, Chen L, He J, Shi X 2020 Science 369 542Google Scholar
[7] Oshima Y, Nakamura A, Matsunaga K 2018 Science 360 772Google Scholar
[8] Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar
[9] Hu H, Wang Y, Fu C, Zhao X, Zhu T 2022 The Innovation 3 100341
[10] Wei T R, Qiu P, Zhao K, Shi X, Chen L 2023 Adv. Mater. 35 2110236Google Scholar
[11] Yang Q, Yang S, Qiu P, Peng L, Wei T R, Zhang Z, Shi X, Chen L 2022 Science 377 854Google Scholar
[12] Yang S, Gao Z, Qiu P, Liang J, Wei T R, Deng T, Xiao J, Shi X, Chen L 2021 Adv. Mater. 33 2007681Google Scholar
[13] He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar
[14] Li Z, Zhang J, Wang S, Dong Z, Lin C, Luo J 2023 Scr. Mater. 228 115313Google Scholar
[15] Chen H, Shao C, Huang S, Gao Z, Huang H, Pan Z, Zhao K, Qiu P, Wei T R, Shi X 2024 Adv. Energy Mater. 14 2303473Google Scholar
[16] Gao Z, Yang Q, Qiu P, Wei T R, Yang S, Xiao J, Chen L, Shi X 2021 Adv. Energy Mater. 11 2100883Google Scholar
[17] Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar
[18] Zhao P, Xue W, Zhang Y, Zhi S, Ma X, Qiu J, Zhang T, Ye S, Mu H, Cheng J, Wang X, Hou S, Zhao L, Xie G, Cao F, Liu X, Mao J, Fu Y, Wang Y, Zhang Q 2024 Nature 631 777Google Scholar
[19] Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T 2024 Nat. Commun. 15 5108Google Scholar
[20] Zhang Z, Gao Z, Deng T, Song Q, Chen L, Bai S 2024 J. Mater. Chem. A 12 8893Google Scholar
[21] Liu Z, Gao W, Oshima H, Nagase K, Lee C H, Mori T 2022 Nat. Commun. 13 1120Google Scholar
[22] Shi X, Zhao T, Zhang X, Sun C, Chen Z, Lin S, Li W, Gu H, Pei Y 2019 Adv. Mater. 31 1903387Google Scholar
[23] Li A, Nan P, Wang Y, Gao Z, Zhang S, Han Z, Zhao X, Ge B, Fu C, Zhu T 2022 Acta Mater. 239 118301Google Scholar
[24] Wu X, Ma X, Yao H, Liang K, Zhao P, Hou S, Yin L, Yang H, Sui J, Lin X, Cao F, Zhang Q, Mao J 2023 ACS Appl. Mater. Interfaces 15 50216Google Scholar
-
图 1 Ag2S基塑性热电材料 (a) Ag20S7Te3[12]; (b) Ag1.98S1/3Se1/3Te1/3[15]; (c) (Ag0.2Cu0.8)2S0.7Se0.3[16]; 基于Ag2S0.5Se0.5 (d)和Ag20S7Te3 (e)的塑性热电器件[10,12]. 引用的图片已获相关授权
Fig. 1. Ag2S-based plastic thermoelectric materials: (a) Ag20S7Te3[12]; (b) Ag1.98S1/3Se1/3Te1/3[15]; (c) (Ag0.2Cu0.8)2S0.7Se0.3[16]; thermoelectric devices based on Ag2S0.5Se0.5[10] (d) and Ag20S7Te3[12] (e). Reproduced with permission from John Wiley and Sons and The Royal Society of Chemistry.
图 2 Mg3Bi2单晶塑性和热电性能[18] (a) Mg3Bi2单晶与其他材料的压缩应力应变曲线对比; (b) Mg3Bi2单晶与部分密排六方金属及塑性热电材料的拉伸应力应变曲线对比; (c) 传统热电材料的拉伸应力应变曲线; (d) 变形后的Mg3Bi2单晶材料; 热电材料功率因子(e)和热电优值(f)与相应的最大拉伸应变. 引用的图片已获相关授权
Fig. 2. Plasticity and thermoelectric properties of Mg3Bi2 single crystal[18]: (a) Compressive stress-strain curves of different thermoelectric materials and ductile semiconductors; (b) tensile stress-strain curves of different hexagonal close-packed metals and ductile semiconductors; (c) tensile stress-strain curves of traditional thermoelectric materials; (d) optical images of deformed Mg3Bi2; power factor (e) and room-temperature ZT (f) of different thermoelectric materials versus the maximum engineering tensile strain. Reproduced with permission from Springer Nature.
图 3 Mg3Bi2单晶微观结构表征与第一性原理计算[18] 变形后Mg3Bi2单晶的扫描电子显微表征图 (a)和透射电子显微表征图(b); (c) Mg3Bi2单晶中观察到的滑移系; (d) $(1\bar 100)$面上的滑移势垒等高线图; (e) $(1\bar 100)$面上沿不同晶向的滑移能; (f) 沿$\langle 11\bar 2\bar 3 \rangle $方向滑移过程中的积分晶体轨道哈密顿布居; (g)—(k) 不同滑移步数时的晶体轨道哈密顿布居. 引用的图片已获相关授权
Fig. 3. Microstructure characterization of deformed Mg3Bi2 single crystal and the first-principles calculation[18]: (a) SEM and (b) TEM images of deformed Mg3Bi2 single crystal; (c) the schematic view of the slip systems in Mg3Bi2; (d) contour plot for the calculated slipping barrier energy of $(1\bar 100)$ plane; (e) slipping barrier energy of $(1\bar 100)$ plane along different crystallographic directions; (f) ICOHP for steps of slipping along $\langle 11\bar 2\bar 3 \rangle $ direction; (g)–(k) -COHP for steps of slipping along $ \langle 11\bar 2\bar 3 \rangle $ direction. Reproduced with permission from Springer Nature.
-
[1] He J, Tritt T M 2017 Science 357 eaak9997Google Scholar
[2] Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar
[3] Wu Z, Zhang S, Liu Z, Mu E, Hu Z 2022 Nano Energy 91 106692Google Scholar
[4] Liu Z, Chen G 2020 Adv. Mater. Technol. 5 2000049Google Scholar
[5] Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2019 Adv. Funct. Mater. 29 1805924Google Scholar
[6] Wei T R, Jin M, Wang Y, Chen H, Gao Z, Zhao K, Qiu P, Shan Z, Jiang J, Li R, Chen L, He J, Shi X 2020 Science 369 542Google Scholar
[7] Oshima Y, Nakamura A, Matsunaga K 2018 Science 360 772Google Scholar
[8] Shi X, Chen H, Hao F, Liu R, Wang T, Qiu P, Burkhardt U, Grin Y, Chen L 2018 Nat. Mater. 17 421Google Scholar
[9] Hu H, Wang Y, Fu C, Zhao X, Zhu T 2022 The Innovation 3 100341
[10] Wei T R, Qiu P, Zhao K, Shi X, Chen L 2023 Adv. Mater. 35 2110236Google Scholar
[11] Yang Q, Yang S, Qiu P, Peng L, Wei T R, Zhang Z, Shi X, Chen L 2022 Science 377 854Google Scholar
[12] Yang S, Gao Z, Qiu P, Liang J, Wei T R, Deng T, Xiao J, Shi X, Chen L 2021 Adv. Mater. 33 2007681Google Scholar
[13] He S, Li Y, Liu L, Jiang Y, Feng J, Zhu W, Zhang J, Dong Z, Deng Y, Luo J, Zhang W, Chen G 2020 Sci. Adv. 6 eaaz8423Google Scholar
[14] Li Z, Zhang J, Wang S, Dong Z, Lin C, Luo J 2023 Scr. Mater. 228 115313Google Scholar
[15] Chen H, Shao C, Huang S, Gao Z, Huang H, Pan Z, Zhao K, Qiu P, Wei T R, Shi X 2024 Adv. Energy Mater. 14 2303473Google Scholar
[16] Gao Z, Yang Q, Qiu P, Wei T R, Yang S, Xiao J, Chen L, Shi X 2021 Adv. Energy Mater. 11 2100883Google Scholar
[17] Liang J, Wang T, Qiu P, Yang S, Ming C, Chen H, Song Q, Zhao K, Wei T R, Ren D, Sun Y Y, Shi X, He J, Chen L 2019 Energy Environ. Sci. 12 2983Google Scholar
[18] Zhao P, Xue W, Zhang Y, Zhi S, Ma X, Qiu J, Zhang T, Ye S, Mu H, Cheng J, Wang X, Hou S, Zhao L, Xie G, Cao F, Liu X, Mao J, Fu Y, Wang Y, Zhang Q 2024 Nature 631 777Google Scholar
[19] Li A, Wang Y, Li Y, Yang X, Nan P, Liu K, Ge B, Fu C, Zhu T 2024 Nat. Commun. 15 5108Google Scholar
[20] Zhang Z, Gao Z, Deng T, Song Q, Chen L, Bai S 2024 J. Mater. Chem. A 12 8893Google Scholar
[21] Liu Z, Gao W, Oshima H, Nagase K, Lee C H, Mori T 2022 Nat. Commun. 13 1120Google Scholar
[22] Shi X, Zhao T, Zhang X, Sun C, Chen Z, Lin S, Li W, Gu H, Pei Y 2019 Adv. Mater. 31 1903387Google Scholar
[23] Li A, Nan P, Wang Y, Gao Z, Zhang S, Han Z, Zhao X, Ge B, Fu C, Zhu T 2022 Acta Mater. 239 118301Google Scholar
[24] Wu X, Ma X, Yao H, Liang K, Zhao P, Hou S, Yin L, Yang H, Sui J, Lin X, Cao F, Zhang Q, Mao J 2023 ACS Appl. Mater. Interfaces 15 50216Google Scholar
计量
- 文章访问数: 1080
- PDF下载量: 93
- 被引次数: 0