搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAlN材料表面态性质研究

杨彦楠 王新强 卢励吾 黄呈橙 许福军 沈波

引用本文:
Citation:

InAlN材料表面态性质研究

杨彦楠, 王新强, 卢励吾, 黄呈橙, 许福军, 沈波

Surface states of InAlN film grown by MOCVD

Yang Yan-Nan, Wang Xin-Qiang, Lu Li-Wu, Huang Cheng-Cheng, Xu Fu-Jun, Shen Bo
PDF
导出引用
  • 运用电流-电压(I-V), 变频电容-电压(C-V)和原子力显微镜 (AFM) 技术研究In组分分别为15%, 17%和21%的Ni/Au/-InAlN肖特基二极管InAlN 样品表面态性质 (表面态密度、时间常数和相对于InAlN 导带底的能级位置). I-V和变频 C-V方法测量得到的实验结果表明, 随着In组分增加, 肖特基势垒高度逐渐降低, 表面态密度依次增加. 变频 C-V特性还表明,随着测试频率降低, C-V曲线有序地朝正电压方向移动, 该趋势随着In组分的增加而变得更加明显, 这可能归结于InAlN表面态的空穴发射. AFM表面形貌研究揭示InAlN 表面粗糙度增加可能是表面态密度增加的主要原因.
    The surface state properties (such as surface state density, time constant and level position related to the bottom of InAlN conduction band) of Ni/Au/-InAlN Schottky barrier diodes with nearly lattice matched (InN=18%) and tensilely (15%) or compressively (21%) strained InAlN barrier layer were evaluated, by using current-voltage (I-V), frequency-dependent capacitance-voltage (C-V) measurements and atomic force microscope (AFM) images. It was found that, with increasing content of In the surface state density increased and the barrier height of the Schottky contacts decreased, respectively. The C-V curves shifted toward the positive bias values with reducing measured frequencies, which became more apparent with increasing In content. It may be due to the hole emission from the surface states of Ni/Au/-InAlN Schottcky contacts. Atomic force microscope (AFM) images indicated that the InAlN surface became rougher with increasing In content, which may be the main reason for the increased surface state densities.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2012CB619303, 2012CB619304);国家自然科学基金(批准号: 61225019, 11023003, 10990102);国家高技术研究发展计划(863计划)(批准号: 2011AA050514, 2011AA03A103, 2011AA03A111)和教育部高等学校博士学科点专项科研基金资助项目资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2012CB619303, 2012CB619304), the National Natural Science Foundation of China (Grant Nos. 61225019, 11023003, 10990102), the National High Technology Research & Development Project of China Program (Grant Nos. 2011AA050514, 2011AA03A103, 2011AA03A111), and the Research Fund for the Doctoral Program of Higher Education.
    [1]

    Yue Y Z, Hu Z Y, Guo J, Sensale-Rodriguez B, Li G W, Wang R H, Faiza F, Fang T, Song B, Gao X, Guo S P, Kosel T, Snider G, Fay P, Jena D, Xing H L 2012 IEEE Electron Device Lett. 33 988

    [2]

    Maier D, Alomari M, Grandjean N, Carlin J F, Diforte-Poisson M A, Dua C, Delage S, Kohn E 2012 IEEE Electron Device Lett. 33 985

    [3]

    Lee H S, Piedra D, Sun M, Gao X, Guo S, Palacios T 2012 IEEE Electron Device Lett. 33 982

    [4]

    Tlek R, Ilgaz A, Gökden S, Teke A, Öztrk M K, Kasap M, Özçelik S, Arslan E, Özbay E 2009 J. Appl. Phys. 105 013707

    [5]

    Tirelli S, Marti D, Sun H, Alt A R, Carlin J F, Grandjean M N, Bolognesi C R 2011 IEEE Electron Device Lett. 32 13648

    [6]

    Choi S, Kim H J, Lochner Z, Zhang Y, Lee Y C, Shen S C, Ryou J H, Dupuis R D 2010 Appl. Phys. Lett. 96 243506

    [7]

    Mikulics M, Stoklas R, Dadgar A, Gregušová D, Novák J, Grtzmacher D, Krost A, Kordoš P 2010 Appl. Phys. Lett. 97 173505

    [8]

    Lin F 2011 Ph.D. Dissertation (Beijing: Peking University) p64 (in Chinese) [林芳 2011 博士论文 (北京: 北京大学)]

    [9]

    Rhoderick E H, Williams R H 1988 Metal-Semiconducter Contacts (Oxford, U.K. Clarendon Press)

    [10]

    Frost S R 1987 Heterojunction Band Discontinuities physics and Devices (North Holland, Amsterdam Press) p359

    [11]

    Levinshtein M, Rumyantsev S L, Shur M 2003 Properties of Advanced Semiconductor Materials (Chemical Industry Press) pp42-66 (in Chinese) [杨树人, 段景智编译 2003 先进半导体材料性能与数据手册 (北京: 化学工业出版社) 第42-66页]

    [12]

    Hasegawa H, Oyama S 2002 J. Vac. Sci. Technol. B 20 1647

    [13]

    Michaelson H B 1978 J. Res. Device 22 72

    [14]

    Lee C T, Lin Y J, Liu D S 2001 Appl. Phys. Lett. 79 2573

    [15]

    Kuzmík J 2002 Semicond. Sci. Technol. 17 540

    [16]

    Monch W(edited) 1995 Semiconductor Surface and Interface (Springer, Berlin, Press)

    [17]

    Arslan E, Btn S, dSafak Y, Ozbay E 2010 J. Electron.Mater. 39 2681

    [18]

    Ozdemir A F, Turut A, Kokce A 2003 Thin. Sol. Films 425 210

    [19]

    Irokawa Y, Matsuki N, Sumiya M, Sakuma Y, Sekiguchi T, Chikyo T, Sumida Y, Nakano Y 2010 Phys. Stat. Sol. C 7 1928

    [20]

    Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H, Tao X M 2006 Appl. Phys. Lett. 89 143505

    [21]

    Osvald J 2011 J.Appl. Phys. 110 073702

    [22]

    Ťapajma M, Čičo K, Kuzmík J, Pogany D, Pozzovivo G, Strasser G, Carlin J F, Gradjean N, Fröhlich .2009 Semicond. Sci. Technol 24 035008

    [23]

    Nicollian E H, Goetzberger A 1967 Bell Sys. Tech. 46 1055

    [24]

    Jrgen H,Werner and Herbert H. Gijttler 1991 J. Appl. Phys. 69 1522

    [25]

    Chen Z T, Fujita K, Ichikawa J, Egawa T 2011 IEEE Electron Device Letts. 32 620

  • [1]

    Yue Y Z, Hu Z Y, Guo J, Sensale-Rodriguez B, Li G W, Wang R H, Faiza F, Fang T, Song B, Gao X, Guo S P, Kosel T, Snider G, Fay P, Jena D, Xing H L 2012 IEEE Electron Device Lett. 33 988

    [2]

    Maier D, Alomari M, Grandjean N, Carlin J F, Diforte-Poisson M A, Dua C, Delage S, Kohn E 2012 IEEE Electron Device Lett. 33 985

    [3]

    Lee H S, Piedra D, Sun M, Gao X, Guo S, Palacios T 2012 IEEE Electron Device Lett. 33 982

    [4]

    Tlek R, Ilgaz A, Gökden S, Teke A, Öztrk M K, Kasap M, Özçelik S, Arslan E, Özbay E 2009 J. Appl. Phys. 105 013707

    [5]

    Tirelli S, Marti D, Sun H, Alt A R, Carlin J F, Grandjean M N, Bolognesi C R 2011 IEEE Electron Device Lett. 32 13648

    [6]

    Choi S, Kim H J, Lochner Z, Zhang Y, Lee Y C, Shen S C, Ryou J H, Dupuis R D 2010 Appl. Phys. Lett. 96 243506

    [7]

    Mikulics M, Stoklas R, Dadgar A, Gregušová D, Novák J, Grtzmacher D, Krost A, Kordoš P 2010 Appl. Phys. Lett. 97 173505

    [8]

    Lin F 2011 Ph.D. Dissertation (Beijing: Peking University) p64 (in Chinese) [林芳 2011 博士论文 (北京: 北京大学)]

    [9]

    Rhoderick E H, Williams R H 1988 Metal-Semiconducter Contacts (Oxford, U.K. Clarendon Press)

    [10]

    Frost S R 1987 Heterojunction Band Discontinuities physics and Devices (North Holland, Amsterdam Press) p359

    [11]

    Levinshtein M, Rumyantsev S L, Shur M 2003 Properties of Advanced Semiconductor Materials (Chemical Industry Press) pp42-66 (in Chinese) [杨树人, 段景智编译 2003 先进半导体材料性能与数据手册 (北京: 化学工业出版社) 第42-66页]

    [12]

    Hasegawa H, Oyama S 2002 J. Vac. Sci. Technol. B 20 1647

    [13]

    Michaelson H B 1978 J. Res. Device 22 72

    [14]

    Lee C T, Lin Y J, Liu D S 2001 Appl. Phys. Lett. 79 2573

    [15]

    Kuzmík J 2002 Semicond. Sci. Technol. 17 540

    [16]

    Monch W(edited) 1995 Semiconductor Surface and Interface (Springer, Berlin, Press)

    [17]

    Arslan E, Btn S, dSafak Y, Ozbay E 2010 J. Electron.Mater. 39 2681

    [18]

    Ozdemir A F, Turut A, Kokce A 2003 Thin. Sol. Films 425 210

    [19]

    Irokawa Y, Matsuki N, Sumiya M, Sakuma Y, Sekiguchi T, Chikyo T, Sumida Y, Nakano Y 2010 Phys. Stat. Sol. C 7 1928

    [20]

    Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H, Tao X M 2006 Appl. Phys. Lett. 89 143505

    [21]

    Osvald J 2011 J.Appl. Phys. 110 073702

    [22]

    Ťapajma M, Čičo K, Kuzmík J, Pogany D, Pozzovivo G, Strasser G, Carlin J F, Gradjean N, Fröhlich .2009 Semicond. Sci. Technol 24 035008

    [23]

    Nicollian E H, Goetzberger A 1967 Bell Sys. Tech. 46 1055

    [24]

    Jrgen H,Werner and Herbert H. Gijttler 1991 J. Appl. Phys. 69 1522

    [25]

    Chen Z T, Fujita K, Ichikawa J, Egawa T 2011 IEEE Electron Device Letts. 32 620

  • [1] 闫大为, 吴静, 闫晓红, 李伟然, 俞道欣, 曹艳荣, 顾晓峰. 晶格匹配InAlN/GaN异质结肖特基接触反向电流的电压与温度依赖关系.  , 2021, 70(7): 077201. doi: 10.7498/aps.70.20201355
    [2] 刘汝新, 董瑞新, 闫循领, 肖夏. 忆阻器单阻态下的记忆电容行为及多态特性.  , 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [3] 牛璐, 王鹿霞. 外场对分子纳米结电流-电压特性的影响.  , 2018, 67(2): 027304. doi: 10.7498/aps.67.20171604
    [4] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究.  , 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [5] 王丽师, 徐建萍, 石少波, 张晓松, 任志瑞, 葛林, 李岚. ZnS修饰对ZnO纳米棒:P3HT复合薄膜I-V性质的影响.  , 2013, 62(19): 196103. doi: 10.7498/aps.62.196103
    [6] 邹志宇, 刘晓芳, 曾敏, 杨白, 于荣海, 姜鹤, 唐瑞鹤, 吴章奔. 电场辅助溶解法实现玻璃表面金纳米粒子的形貌控制.  , 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [7] 王平亚, 张金风, 薛军帅, 周勇波, 张进成, 郝跃. 晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究.  , 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [8] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂. AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合.  , 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [9] 李金花, 王鹿霞. 光激发下分子纳米结中电荷输运的振动效应研究.  , 2011, 60(11): 117310. doi: 10.7498/aps.60.117310
    [10] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究.  , 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [11] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [12] 谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃. 60Co γ射线辐射对AlGaN/GaN HEMT器件的影响.  , 2009, 58(2): 1161-1165. doi: 10.7498/aps.58.1161
    [13] 武煜宇, 陈石, 高新宇, Andrew Thye Shen Wee, 徐彭寿. 6H-SiC(0001)-6[KF(]3[KF)]×6[KF(]3[KF)]R30°重构表面的同步辐射角分辨光电子能谱研究.  , 2009, 58(6): 4288-4294. doi: 10.7498/aps.58.4288
    [14] 杨学文, 郑家贵, 张静全, 冯良桓, 蔡 伟, 蔡亚平, 李 卫, 黎 兵, 雷 智, 武莉莉. CdTe/CdS太阳电池I-V,C-V特性研究.  , 2006, 55(5): 2504-2507. doi: 10.7498/aps.55.2504
    [15] 章永凡, 丁开宁, 林 伟, 李俊篯. VC(001)弛豫表面构型与电子结构第一性原理研究.  , 2005, 54(3): 1352-1360. doi: 10.7498/aps.54.1352
    [16] 黄维清, 陈克求, 帅志刚, 王玲玲, 胡望宇. 磁耦合效应对半无限超晶格中表面电子态的影响.  , 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
    [17] 杨 春, 李言荣, 薛卫东, 陶佰万, 刘兴钊, 张 鹰, 黄 玮. α-Al2O3(0001)基片表面结构与能量研究.  , 2003, 52(9): 2268-2273. doi: 10.7498/aps.52.2268
    [18] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷.  , 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
    [19] 李宏伟, 王太宏. InAs量子点在肖特基势垒二极管输运特性中的影响.  , 2001, 50(12): 2501-2505. doi: 10.7498/aps.50.2501
    [20] 张裕恒, 刘宏宝, 陈赓华. 超导交叉膜隧道结的电流-电压滞迴.  , 1985, 34(4): 429-438. doi: 10.7498/aps.34.429
计量
  • 文章访问数:  6713
  • PDF下载量:  717
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-12
  • 修回日期:  2013-05-07
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map