Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy

Xia Zhen-Chao Wang Wei-Li Luo Sheng-Bao Wei Bing-Bo

Citation:

Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy

Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Rapid solidification is a typical non-equilibrium phase transition process, and the crystallization rate of liquid metal is larger than 1 cms-1. If the alloy is solidified in this case, the solute segregation is reduced or even eliminated and the solid solubility can be improved significantly. Rapid solidification technique can be used to refine the microstructures of alloys, which provides an effective method to prepare the novel metastable materials and improve their strengths, plasticities magnetic properties, etc. In this work, the rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy are investigated by drop tube and melt spinning techniques. It is known that Fe-Cu-Sn ternary alloy forms a typical immiscible system. However, the experimental results reveal that the liquid phase separation does not take place during the rapid solidification of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. The solidification microstructures are all composed of primary Fe dendrites together with Cu3Sn and Cu6Sn5 phases. Under the free fall condition, as the drop tube technique provides microgravity and containerless states, the maximum surface cooling rate and maximum undercooling of alloy droplets are 1.3105 Ks-1and 283 K (0.19 TL), respectively. When the surface cooling rate reaches 1.9103 Ks-1, the primary Fe phase appears as coarse dendrites, and its maximum dendrite length is 41 m. Meanwhile, the Cu3Sn and Cu6Sn5 phases are distributed in the Fe interdendritic spacings. Once the surface cooling rate increases up to 3.3103 Ks-1, the morphology of the primary Fe phase transforms from coarse dendrites into broken dendrites. It is found that the cooling rate and undercooling greatly affect the solidification microstructure of alloy droplets. During the melt spinning experiments, since the large temperature gradient exists between the wheel surface and free surface, the solidification microstructure is subdivided into two crystal zones according to the different microstructure morphologies of Fe phase: fine grain (zone I) and coarse grain (zone II), where zone I is characterized by granular grains while zone II has some dendrites with secondary branch. Under the rapid cooling condition, the microstructures of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy ribbons are refined significantly and show soft magnetic characteristics. As the surface cooling rate increases from 8.9106 to 2.7107 Ks-1, the lattice constant of Fe solid solution rises rapidly and the coercivity increases from 93.7 to 255.6 Oe. Furthermore, the results indicate that the grain size of Fe phase is the main factor influencing the coercivity of alloy ribbons.
      Corresponding author: Wei Bing-Bo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51571163, 51327901).
    [1]

    Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905

    [2]

    Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701

    [3]

    Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109

    [4]

    Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601

    [5]

    Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405

    [6]

    Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502

    [7]

    Waitukaitis S R, Jaeger H M 2012 Nature 487 205

    [8]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355

    [9]

    Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200

    [10]

    vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329

    [11]

    Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 55 1341]

    [12]

    Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501

    [13]

    Mullis A M 2015 J. Appl. Phys. 117 114305

    [14]

    Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603

    [15]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]

    [16]

    Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103

    [17]

    Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 53 1909]

    [18]

    Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119

    [19]

    Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503

    [20]

    Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901

    [21]

    Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39

    [22]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335

    [23]

    Miettinen J 2008 Calphad 32 500

    [24]

    Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498

    [25]

    Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482

    [26]

    Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863

    [27]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [28]

    Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097

    [29]

    Poirier D, Salcudean M {1998 J. Heat Transfer 110 56

    [30]

    Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025

    [31]

    Herzer G 1990 IEEE Trans. Mag. 26 1397

    [32]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

  • [1]

    Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905

    [2]

    Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701

    [3]

    Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109

    [4]

    Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601

    [5]

    Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405

    [6]

    Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502

    [7]

    Waitukaitis S R, Jaeger H M 2012 Nature 487 205

    [8]

    Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355

    [9]

    Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200

    [10]

    vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329

    [11]

    Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 55 1341]

    [12]

    Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501

    [13]

    Mullis A M 2015 J. Appl. Phys. 117 114305

    [14]

    Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603

    [15]

    Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]

    [16]

    Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103

    [17]

    Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 53 1909]

    [18]

    Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119

    [19]

    Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503

    [20]

    Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901

    [21]

    Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39

    [22]

    Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335

    [23]

    Miettinen J 2008 Calphad 32 500

    [24]

    Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498

    [25]

    Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482

    [26]

    Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863

    [27]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [28]

    Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097

    [29]

    Poirier D, Salcudean M {1998 J. Heat Transfer 110 56

    [30]

    Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025

    [31]

    Herzer G 1990 IEEE Trans. Mag. 26 1397

    [32]

    Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100

  • [1] Li Lu-Yuan, Ruan Ying, Wei Bing-Bo. Rapid dendrite growth mechanism and solute distribution in liquid ternary Fe-Cr-Ni alloys. Acta Physica Sinica, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [2] Xiao Jun-Ru, Liu Zhong-Wu, Lou Hua-Shan, Zhan Hui-Xiong. Coercivity enhancement of waste Nd-Fe-B magnets by Pr70Cu30 grain boundary diffusion process. Acta Physica Sinica, 2018, 67(6): 067502. doi: 10.7498/aps.67.20172551
    [3] Gu Qian-Qian, Ruan Ying, Dai Fu-Ping. Rapid solidification mechanism of Fe-Al-Nb alloy droplet and its influence on microhardness under microgravity condition. Acta Physica Sinica, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [4] Chen Ke-Ping, Lü Peng, Peng Wang. Liquid-solid phase transition of Cu-Zr eutectic alloy under microgravity condition. Acta Physica Sinica, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [5] Wei Shao-Lou, Huang Lu-Jun, Chang Jian, Yang Shang-Jing, Geng Lin. Substantial undercooling and rapid dendrite growth of liquid Ti-Al alloy. Acta Physica Sinica, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [6] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [7] Guo Chun-Wen, Li Jun-Jie, Ma Yuan, Wang Jin-Cheng. Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification. Acta Physica Sinica, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [8] Li Yong-Qiang, Zhang Chen-Hui, Liu Ling, Duan Li, Kang Qi. The analytical approximate solutions of capillary flow in circular tubes under microgravity. Acta Physica Sinica, 2013, 62(4): 044701. doi: 10.7498/aps.62.044701
    [9] Zhang Yun-Peng, Lin Xin, Wei Lei, Peng Dong-Jian, Wang Meng, Huang Wei-Dong. Effect of interface energy anisotropy on the dendritic growth in directional solidification. Acta Physica Sinica, 2013, 62(17): 178105. doi: 10.7498/aps.62.178105
    [10] Wu Wei, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [11] Yan Na, Wang Wei-Li, Dai Fu-Ping, Wei Bing-Bo. Microstructure formation mechanism of rapidly solidified ternary Co-Cu-Pb monotectic alloys. Acta Physica Sinica, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [12] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [13] Yin Han-Yu, Lu Xiao-Yu. Rapid solidification of undercooled Cu60Sn30Pb10 monotectic alloy. Acta Physica Sinica, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [14] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [15] Mei Ce-Xiang, Ruan Ying, Dai Fu-Ping, Wei Bing-Bo. Phase constitution and solidification characteristics of undercooled Ag-Cu-Ge ternary eutectic alloy. Acta Physica Sinica, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] Zang Du-Yang, Wang Hai-Peng, Wei Bing-Bo. Rapid dendritic growth in highly undercooled ternary Ni-Cu-Co alloy. Acta Physica Sinica, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [19] Zhao Dai-Ping, Jing Tao, Liu Bai-Cheng. Simulating the three-dimensional dendritic growth of Al alloy using the phase-fi eld method. Acta Physica Sinica, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [20] Yao Wen-Jing, Yang Chun, Han Xiu-Jun, Chen Min, Wei Bing-Bo, Guo Zeng-Yuan. Rapid dendritic growth in an undercooled Ni-Cu alloy under the microgravity condition. Acta Physica Sinica, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
Metrics
  • Abstract views:  5887
  • PDF Downloads:  332
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2016
  • Accepted Date:  19 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map