-
采用自由落体和熔体急冷两种实验技术实现了三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固,研究了其组织形成机理和室温磁性特征. 实验发现,合金熔体在不同快速凝固条件下都没有发生液相分离,其室温组织均由初生Fe相枝晶以及Cu3Sn和Cu6Sn5二个包晶相组成. 计算表明,落管中合金液滴的表面冷却速率和过冷度分别达1.3105 Ks-1和283 K(0.19 TL). 当表面冷却速率增大至3.3103 Ks-1,初生Fe相发生由粗大枝晶向碎断枝晶的演化. 急冷快速凝固过程中,初生Fe相凝固组织沿辊面向自由面方向形成细晶区和粗晶区,其中细晶区以粒状晶为特征而粗晶区存在具有二次分枝的树枝晶. 随着表面冷却速率由8.9106增大至2.7107 Ks-1,Fe相平均晶粒尺寸显著减小,合金条带的矫顽力增大一倍多.Rapid solidification is a typical non-equilibrium phase transition process, and the crystallization rate of liquid metal is larger than 1 cms-1. If the alloy is solidified in this case, the solute segregation is reduced or even eliminated and the solid solubility can be improved significantly. Rapid solidification technique can be used to refine the microstructures of alloys, which provides an effective method to prepare the novel metastable materials and improve their strengths, plasticities magnetic properties, etc. In this work, the rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy are investigated by drop tube and melt spinning techniques. It is known that Fe-Cu-Sn ternary alloy forms a typical immiscible system. However, the experimental results reveal that the liquid phase separation does not take place during the rapid solidification of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. The solidification microstructures are all composed of primary Fe dendrites together with Cu3Sn and Cu6Sn5 phases. Under the free fall condition, as the drop tube technique provides microgravity and containerless states, the maximum surface cooling rate and maximum undercooling of alloy droplets are 1.3105 Ks-1and 283 K (0.19 TL), respectively. When the surface cooling rate reaches 1.9103 Ks-1, the primary Fe phase appears as coarse dendrites, and its maximum dendrite length is 41 m. Meanwhile, the Cu3Sn and Cu6Sn5 phases are distributed in the Fe interdendritic spacings. Once the surface cooling rate increases up to 3.3103 Ks-1, the morphology of the primary Fe phase transforms from coarse dendrites into broken dendrites. It is found that the cooling rate and undercooling greatly affect the solidification microstructure of alloy droplets. During the melt spinning experiments, since the large temperature gradient exists between the wheel surface and free surface, the solidification microstructure is subdivided into two crystal zones according to the different microstructure morphologies of Fe phase: fine grain (zone I) and coarse grain (zone II), where zone I is characterized by granular grains while zone II has some dendrites with secondary branch. Under the rapid cooling condition, the microstructures of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy ribbons are refined significantly and show soft magnetic characteristics. As the surface cooling rate increases from 8.9106 to 2.7107 Ks-1, the lattice constant of Fe solid solution rises rapidly and the coercivity increases from 93.7 to 255.6 Oe. Furthermore, the results indicate that the grain size of Fe phase is the main factor influencing the coercivity of alloy ribbons.
-
Keywords:
- rapid solidification /
- microgravity /
- dendrite /
- coercivity
[1] Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905
[2] Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701
[3] Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109
[4] Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601
[5] Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405
[6] Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502
[7] Waitukaitis S R, Jaeger H M 2012 Nature 487 205
[8] Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355
[9] Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200
[10] vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329
[11] Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 55 1341]
[12] Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501
[13] Mullis A M 2015 J. Appl. Phys. 117 114305
[14] Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603
[15] Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]
[16] Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103
[17] Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 53 1909]
[18] Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119
[19] Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503
[20] Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901
[21] Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39
[22] Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335
[23] Miettinen J 2008 Calphad 32 500
[24] Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498
[25] Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482
[26] Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863
[27] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[28] Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097
[29] Poirier D, Salcudean M {1998 J. Heat Transfer 110 56
[30] Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025
[31] Herzer G 1990 IEEE Trans. Mag. 26 1397
[32] Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100
-
[1] Tomasino D, Yoo C 2013 Appl. Phys. Lett. 103 061905
[2] Becker C A, Olmsted D, Asta M, Hoyt J J, Foiles S M 2007 Phys. Rev. Lett. 98 125701
[3] Levitas V L, Roy A M 2015 Phys. Rev. B 91 174109
[4] Utter B, Bodenschatz E 2005 Phys. Rev. E 72 011601
[5] Tsibidis G D, Fotakis C, Stratakis E 2015 Phys. Rev. B 92 041405
[6] Kuczera P, Steurer W 2015 Phys. Rev. Lett. 115 085502
[7] Waitukaitis S R, Jaeger H M 2012 Nature 487 205
[8] Luo S B, Wang W L, Chang J, Xia Z C, Wei B B 2014 Acta Mater. 69 355
[9] Steinbach S, Ratke L {2005 Mater. Sci. Eng. A 413 200
[10] vri T A, Chiriac H 2014 J. Appl. Phys. 115 17A329
[11] Long W Y, Cai Q Z, Wei B K, Chen L L 2006 Acta Phys. Sin. 55 1341 (in Chinese) [龙文元, 蔡启舟, 魏伯康, 陈立亮 2006 55 1341]
[12] Lin C Y, Tien H Y, Chin T S 2005 Appl. Phys. Lett. 86 162501
[13] Mullis A M 2015 J. Appl. Phys. 117 114305
[14] Archer A J, Robbins M J, Thiele U {2012 Phys. Rev. E 86 031603
[15] Yang S J, Wang W L, Wei B B 2015 Acta Phys. Sin. 64 056401 (in Chinese) [杨尚京, 王伟丽, 魏炳波 2015 64 056401]
[16] Lee M H, Das J, Sordelet D J, Eckert J, Hurd A J 2012 Appl. Phys. Lett. 101 124103
[17] Xu J F, Wei B B 2004 Acta Phys. Sin. 53 1909 (in Chinese) [徐锦锋, 魏炳波 2004 53 1909]
[18] Chiba A, Nomura N, Ono Y 2007 Acta Mater. 55 2119
[19] Montiel H, Alvarez G, Betancourt I, Zamorano R, Valenzuela R 2005 Appl. Phys. Lett. 86 072503
[20] Xia Z C, Wang W L, Luo S B, Wei B B 2015 J. Appl. Phys. 117 054901
[21] Zhou H Y, Zheng J X {1987 Acta Metall. Sin. B 23 39
[22] Wang W L, Wu Y H, Li L H, Zhai W, Zhang X M, Wei B B 2015 Sci. Rep. 5 16335
[23] Miettinen J 2008 Calphad 32 500
[24] Chang Y A, Neumann J P, Choudary U V {1979 Int. Copper Res. Assoc. 1979 498
[25] Wang W L, Li Z Q, Wei B B 2011 Acta Mater. 59 5482
[26] Bird R B, Stewart W E, Lightfoot E N 2002 Transport Phenomena (New York: John Wiley and Sons. Inc.) p863
[27] Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231
[28] Grant P S, Cantor B, Katgerman L 1993 Acta Metall. Mater. 41 3097
[29] Poirier D, Salcudean M {1998 J. Heat Transfer 110 56
[30] Mebarki M, Layadi A, Guittoum A, Benabbas A, Ghebouli B, Saad M, Menni N 2011 Appl. Surf. Sci. 257 7025
[31] Herzer G 1990 IEEE Trans. Mag. 26 1397
[32] Schrefl T, Fidler J, Kronmller H 1994 Phys. Rev. B 49 6100
计量
- 文章访问数: 5870
- PDF下载量: 332
- 被引次数: 0