Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of multi-combined effects of parameters on polymer charging characteristics due to electron irradiation

Feng Guo-Bao Wang Fang Cao Meng

Citation:

Numerical simulation of multi-combined effects of parameters on polymer charging characteristics due to electron irradiation

Feng Guo-Bao, Wang Fang, Cao Meng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Charging characteristics of an insulator specimen due to non-penetrated electron irradiation have been attracting a great deal of attention in the fields such as scanning electron microscopy, electron probe analysis, and space irradiation. In this paper, we use a numerical simulation model based on Monte Carlo method for investigating the electron scattering. The elastic scattering is calculated with the Mott cross-section, and the inelastic scattering is simulated with Penn model and the fast secondary electron model according to the primary energy. The charge transport caused by the build-in electric field and charge density gradient is calculated with finite-difference time-domain method. Multi-combined effect of correlative parameters on charging characteristics is investigated by efficient multithreading parallel computing. During the irradiation, the landing energy of primary electrons decreases due to the negative surface potential, which makes the secondary electron yield increase. Variations of secondary electron current and sample current are presented to verify the validity of the simulation model by comparing with existing experimental results. Evolutions of leakage current, surface potential and internal space charge quantity are calculated under different conditions of incident electron current, primary energy and sample thickness. The results are presented in contour maps with different multi-parameter combinations, primary energy and sample mobility, primary energy and sample thickness, and primary energy and incident current. The balance state of charging will be determined by leakage current under conditions of a larger primary energy, sample mobility, incident current, or a less sample thickness, which is shown as the leakage current dominated mode. While in the cases of a lower primary energy, sample mobility, incident current, or a larger sample thickness, the balance state of charging is mainly dominated by secondary electron current, as the secondary electron current dominated mode. In other cases except the above two, the balance state will be determined by both leakage and secondary currents as the mixture mode. In the same mode, variations of charging characteristics with parameters are monotonic. When the change of a parameter makes the negative surface potential increase, the effect of this parameter on negative surface potential will be weakened, while the effects of other parameters on the negative potential will be enhanced. With the change of current dominated mode, the total charge quantity exhibits the local maximum with respect to the sample thickness, and the value of this maximum increases with primary energy. Moreover, the leakage current increases with incident current linearly. The presented results can be helpful for understanding regularities and mechanisms of charging due to electron irradiation, and estimating the charging intensity under different conditions of irradiation and sample material.
      Corresponding author: Wang Fang, wangfang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175140, 11004157, 11204229), the Foundation of National Key Laboratory of Space Microwave Technology, China (Grant No. 9140C530101130C53013), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • [1] Yu Bo-Wen, He Xiao-Tian, Xu Jin-Liang. Numerical simulation of fluid-structure coupled heat transfer characteristics of supercritical CO2 pool heat transfer. Acta Physica Sinica, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] Wang Kang-Ying, Ma Cai-Yuan, Yu Hui-Min, Zhang Hai-Tao, Cen Jian-Yong, Wang Ying-Ying, Pan Jun-Xing, Zhang Jin-Jun. The self-assembly behavior of polymer/nanorods hybrid system under oscillation field. Acta Physica Sinica, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [3] Zhuang Xiao-Ru, Xu Xin-Hai, Yang Zhi, Zhao Yan-Xing, Yu Peng. Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region. Acta Physica Sinica, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [4] Liu Jing, Zhang Hai-Bo. Charging characteristics and micromechanism of space electrons irradiated polymers. Acta Physica Sinica, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [5] Huo Zhi-Sheng, Pu Hong-Bin, Li Wei-Qin. Charging effect of polymer thin film under irradiation of high-energy transmission electron beam. Acta Physica Sinica, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [6] Yan Da-Dong, Zhang Xing-Hua. Recent development on the theory of polymer crystallization. Acta Physica Sinica, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [7] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [9] Huang Yong-Xian, Lü Shi-Xiong, Tian Xiu-Bo, Yang Shi-Qin, Fu Ricky, Chu K Paul, Leng Jin-Song, Li Yao. Effect of physical properties of polymer on ion implantation. Acta Physica Sinica, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [10] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [11] Zhou Ke-Yu, Ye Hui, Zhen Hong-Yu, Yin Yi, Shen Wei-Dong. Study of tunable Fabry-Perot filter based on piezoelectric polymer film. Acta Physica Sinica, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [12] Quan Rong-Hui, Zhang Zhen-Long, Han Jian-Wei, Huang Jian-Guo, Yan Xiao-Juan. Phenomenon of deep charging in polymer under electron beam irradiation. Acta Physica Sinica, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [13] Zhang Hong-Ping, Ouyang Jie, Ruan Chun-Lei. A multi-scale model with GENERIC structure of polymeric melt with fiber suspensions. Acta Physica Sinica, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [14] Hu Yue, Rao Hai-Bo. Numerical simulation of electrical transport characteristics of single layer organic devices. Acta Physica Sinica, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [15] Shi Jing, Gao Kun, Lei Jie, Xie Shi-Jie. A real space study on the conducting polymer with a ground-state nondegenerate structure. Acta Physica Sinica, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [16] Yin Li-Qin, Peng Jun-Biao. Hole transport in polymer P3HT with different annealing temperatures. Acta Physica Sinica, 2009, 58(5): 3456-3460. doi: 10.7498/aps.58.3456
    [17] Zhang Ya-Ni. High birefringence tunable effect of microstructured polymer optical fiber. Acta Physica Sinica, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [18] Wang Yi-Ping, Chen Jian-Ping, Li Xin-Wan, Zhou Jun-He, Shen Hao, Shi Chang-Hai, Zhang Xiao-Hong, Hong Jian-Xun, Ye Ai-Lun. Fast tunable electro-optic polymer waveguide gratings. Acta Physica Sinica, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [19] Cao Wan-Qiang, Li Jing-De. . Acta Physica Sinica, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
Metrics
  • Abstract views:  5629
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  02 June 2015
  • Accepted Date:  02 August 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map