-
Charging characteristics of an insulator specimen due to non-penetrated electron irradiation have been attracting a great deal of attention in the fields such as scanning electron microscopy, electron probe analysis, and space irradiation. In this paper, we use a numerical simulation model based on Monte Carlo method for investigating the electron scattering. The elastic scattering is calculated with the Mott cross-section, and the inelastic scattering is simulated with Penn model and the fast secondary electron model according to the primary energy. The charge transport caused by the build-in electric field and charge density gradient is calculated with finite-difference time-domain method. Multi-combined effect of correlative parameters on charging characteristics is investigated by efficient multithreading parallel computing. During the irradiation, the landing energy of primary electrons decreases due to the negative surface potential, which makes the secondary electron yield increase. Variations of secondary electron current and sample current are presented to verify the validity of the simulation model by comparing with existing experimental results. Evolutions of leakage current, surface potential and internal space charge quantity are calculated under different conditions of incident electron current, primary energy and sample thickness. The results are presented in contour maps with different multi-parameter combinations, primary energy and sample mobility, primary energy and sample thickness, and primary energy and incident current. The balance state of charging will be determined by leakage current under conditions of a larger primary energy, sample mobility, incident current, or a less sample thickness, which is shown as the leakage current dominated mode. While in the cases of a lower primary energy, sample mobility, incident current, or a larger sample thickness, the balance state of charging is mainly dominated by secondary electron current, as the secondary electron current dominated mode. In other cases except the above two, the balance state will be determined by both leakage and secondary currents as the mixture mode. In the same mode, variations of charging characteristics with parameters are monotonic. When the change of a parameter makes the negative surface potential increase, the effect of this parameter on negative surface potential will be weakened, while the effects of other parameters on the negative potential will be enhanced. With the change of current dominated mode, the total charge quantity exhibits the local maximum with respect to the sample thickness, and the value of this maximum increases with primary energy. Moreover, the leakage current increases with incident current linearly. The presented results can be helpful for understanding regularities and mechanisms of charging due to electron irradiation, and estimating the charging intensity under different conditions of irradiation and sample material.
-
Keywords:
- charging characteristics /
- numerical simulation /
- contour map /
- polymer
[1] Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]
[2] Cazaux J 2005 J. Microsc. 217 16
[3] Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58
[4] Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004
[5] Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407
[6] Ura K 1998 J. Electron Microsc. 47 143
[7] Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15
[8] Li W J, Bauhofer W 2011 Carbon 49 3891
[9] Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901
[10] Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901
[11] Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410
[12] Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123
[13] Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979
[14] Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62
[15] Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117
[16] Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209
[17] Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157
[18] Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665
[19] Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988
[20] Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103
[21] Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]
[22] Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711
[23] Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942
[24] Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001
[25] Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890
[26] Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]
[27] Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192
[28] Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904
[29] Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955
[30] Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763
[31] Li W Q, Zhang H B 2010 Micron 41 416
[32] Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 61 241401]
[33] Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066
[34] Penn D R 1987 Phys. Rev. B 35 482
[35] Ding Z J, Shimizu R 1996 Scanning 18 92
[36] Joy D C, Luo S 1989 Scanning 11 176
[37] Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79
[38] Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443
-
[1] Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 58 1205]
[2] Cazaux J 2005 J. Microsc. 217 16
[3] Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58
[4] Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004
[5] Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407
[6] Ura K 1998 J. Electron Microsc. 47 143
[7] Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15
[8] Li W J, Bauhofer W 2011 Carbon 49 3891
[9] Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901
[10] Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901
[11] Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410
[12] Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123
[13] Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979
[14] Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62
[15] Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117
[16] Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209
[17] Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157
[18] Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665
[19] Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988
[20] Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103
[21] Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]
[22] Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711
[23] Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942
[24] Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001
[25] Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890
[26] Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 58 684]
[27] Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192
[28] Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904
[29] Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955
[30] Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763
[31] Li W Q, Zhang H B 2010 Micron 41 416
[32] Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 61 241401]
[33] Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066
[34] Penn D R 1987 Phys. Rev. B 35 482
[35] Ding Z J, Shimizu R 1996 Scanning 18 92
[36] Joy D C, Luo S 1989 Scanning 11 176
[37] Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79
[38] Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443
Catalog
Metrics
- Abstract views: 5629
- PDF Downloads: 128
- Cited By: 0