-
利用X射线散射对纯聚合物材料,包括聚乙烯拉伸行为及变形机理的研究与日俱增. 本文选择低密度聚乙烯/多壁碳纳米管(LDPE/2% MWCNTs)复合材料为实验材料,基于同步辐射小角散射的测试平台,对电子辐照的LDPE/MWCNTs复合材料拉伸过程中的X射线小角散射(SAXS)和广角衍射(WAXD)信号进行了原位测试分析,重点分析了低能电子辐照后复合材料拉伸变形过程中微观结构的演化规律. 研究结果表明,低能电子辐照会导致复合材料屈服强度显著提高,而断裂延伸率降低;电子辐照可制约LDPE/MWCNTs复合材料基体变形,从而使应变诱发的片晶破碎过程受到抑制,并且较高注量电子辐照可强烈抑制晶体转动和新晶体形成;在拉伸变形过程中,主要强化机理包括辐照引起MWCNTs强化的增强(界面强化)和辐照对LDPE基体产生交联导致的强化效应.Polyethylene/carbon nanotube (PE/CNT) composites with high hydrogen content as a kind of structural material for space radiation shielding have extensive potential applications in future aerospace field due to their unusual radiation shielding, lightweight, and easy processing. In the space irradiation environment, the composites are sensitive to radiation damage, which changes their microstructures, directly affecting their mechanical performances and shielding effectiveness. Low energy electrons (200 keV) are important radiation environmental factors. Effects and mechanisms for mechanical damage of PE/CNTs composites induced by low energy electrons are studied, which has important academic value and practical significance. Previous research mainly involves the qualitative evaluations of the changes in the mechanical performance index of polymer nanocomposites. The inner relationship between microstructural change induced by radiation and mechanical behavior of the nanocomposites, especially in the PE/CNTs composites has not been studied in depth so far. In this paper, low-density polyethylene (LDPE)/ multi-walled carbon nanotube (MWCNT) composites are chosen as a research object. Based on 110 keV electron irradiation, tensile deformation mechanism of the LDPE/MWCNT composite is studied. The synchrotron radiation X-ray small angle scattering (SAXS) and wide angle diffraction (WAXD) are used to reveal the real-time microstructure evolutions of the nanocomposites after and before irradiation in the process of stretching. Tensile deformation mechanisms of LDPE/MWCNT composite after and before the 110 keV electron irradiation are revealed. Experimental results show that the tensile deformation behavior for the irradiated LDPE by 110 keV electrons is different from that for unirradiated sample. The electron irradiation increases the tensile strength of the LDPE/MWCNT composite and reduces the elongation at break. Moreover, with increasing the irradiation fluence, the tensile strength and the elongation at break of the LDPE/MWCNT composite significantly increases and decreases, respectively. The electron irradiation could hinder the deformations of the LDPE matrix including crystalline case and amorphous case, constrain the fragmentation of original lamellae, the directional arrangement of the MWCNTs, the formation of new crystal and the rotation of lamellae, especially in higher irradiation fluence. During tensile deformation, the main strengthening mechanism for the irradiated LDPE/MWCNT composites by the 110 keV electrons is crosslinking strengthening effect in LDPE matrix. On the other hand, enhanced interaction (mainly interface strengthening) between MWCNTs and LDPE matrix induced by irradiation is attributed to the main strengthening mechanism for the irradiated LDPE/MWCNT composites. These results could provide a theoretical basis and technical support for the reasonable design and successful application of CNT-based polymer composites as structural material for space radiation shielding.
-
Keywords:
- nanocomposite /
- electron irradiation /
- synchrotron radiation /
- tensile properties
[1] Iijima S 1991 Nature 354 56
[2] Martinez A, Galano A 2010 J. Phys. Chem. C 114 8184
[3] Jung C H, Lee D H, Hwang I T, Im D S, Shin J H, Kang P H, Choi J H 2013 J. Nucl. Mater. 438 41
[4] Kumar A P, Depan D, Tomer N S, Singh R P 2009 Prog. Polym. Sci. 34 479
[5] Li Z, Nambiar S, Zhang W, Yeow J T W 2013 Mater. Lett. 108 79
[6] Njuguna J, Pielichowski K 2004 Adv. Eng. Mater. 6 204
[7] Nielsen K L C, Hill D J T, Watson K A, Connell J W, Ikeda S, Kudo H, Whittaker A K 2008 Polym. Degrad. Stab. 93 169.
[8] Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2011 Compos. Sci. Technol. 71 281
[9] Rama Sreekanth P S, Naresh Kumar N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390
[10] Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2012 Carbon 50 2442
[11] Campo N, Visco A M 2012 Int. J. Polym. Anal. Charact. 17 144
[12] Dintcheva N T, La Mantia F P, Malatesta V 2009 Polym. Degrad. Stab. 94 162
[13] Sreekanth P S R, Kumar N N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390
[14] Castell P, Martinez-Morlanes M J, Alonso P J, Martinez M T, Puertolas J A 2013 J. Mater. Sci. 48 6549
[15] Rui E R, Yang J Q, Li X J, Liu C M, Tian F, Gao F 2014 J. Appl. Polym. Sci. 131 40269
[16] Liu Y P, Cui K P, Tian N, Zhou W Q, Meng L P, Li L B, Ma Z, Wang X L 2012 Macromolecules 45 2764
[17] Ma Z, Shao C G, Wang X, Zhao B J, Li X Y, An H N, Yan T Z, Li Z M, Li L B 2009 Polymer 50 2706
[18] Tang Y J, Jiang Z Y, Men Y F, An L J, Enderle H F, Lilge D, Roth S V, Gehrke R, Rieger J 2007 Polymer 48 5125
[19] Schneider K, Zafeiropoulos N E, Stamm M 2009 Adv. Eng. Mater. 11 502
[20] Yang J Q, Li X J, Ma G L, Liu C M, Zou M N 2015 Acta Phys. Sin. 64 136401 (in Chinese) [杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠 2015 64 136401]
-
[1] Iijima S 1991 Nature 354 56
[2] Martinez A, Galano A 2010 J. Phys. Chem. C 114 8184
[3] Jung C H, Lee D H, Hwang I T, Im D S, Shin J H, Kang P H, Choi J H 2013 J. Nucl. Mater. 438 41
[4] Kumar A P, Depan D, Tomer N S, Singh R P 2009 Prog. Polym. Sci. 34 479
[5] Li Z, Nambiar S, Zhang W, Yeow J T W 2013 Mater. Lett. 108 79
[6] Njuguna J, Pielichowski K 2004 Adv. Eng. Mater. 6 204
[7] Nielsen K L C, Hill D J T, Watson K A, Connell J W, Ikeda S, Kudo H, Whittaker A K 2008 Polym. Degrad. Stab. 93 169.
[8] Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2011 Compos. Sci. Technol. 71 281
[9] Rama Sreekanth P S, Naresh Kumar N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390
[10] Martnez-Morlanes M J, Castell P, Martnez-Nogus V, Martinez M T, Alonso P J, Purtolas J A 2012 Carbon 50 2442
[11] Campo N, Visco A M 2012 Int. J. Polym. Anal. Charact. 17 144
[12] Dintcheva N T, La Mantia F P, Malatesta V 2009 Polym. Degrad. Stab. 94 162
[13] Sreekanth P S R, Kumar N N, Kanagaraj S 2012 Compos. Sci. Technol. 72 390
[14] Castell P, Martinez-Morlanes M J, Alonso P J, Martinez M T, Puertolas J A 2013 J. Mater. Sci. 48 6549
[15] Rui E R, Yang J Q, Li X J, Liu C M, Tian F, Gao F 2014 J. Appl. Polym. Sci. 131 40269
[16] Liu Y P, Cui K P, Tian N, Zhou W Q, Meng L P, Li L B, Ma Z, Wang X L 2012 Macromolecules 45 2764
[17] Ma Z, Shao C G, Wang X, Zhao B J, Li X Y, An H N, Yan T Z, Li Z M, Li L B 2009 Polymer 50 2706
[18] Tang Y J, Jiang Z Y, Men Y F, An L J, Enderle H F, Lilge D, Roth S V, Gehrke R, Rieger J 2007 Polymer 48 5125
[19] Schneider K, Zafeiropoulos N E, Stamm M 2009 Adv. Eng. Mater. 11 502
[20] Yang J Q, Li X J, Ma G L, Liu C M, Zou M N 2015 Acta Phys. Sin. 64 136401 (in Chinese) [杨剑群, 李兴冀, 马国亮, 刘超铭, 邹梦楠 2015 64 136401]
计量
- 文章访问数: 6096
- PDF下载量: 168
- 被引次数: 0