-
A simple outgassing model for dielectric surface breakdown due to the high power microwave (HPM) irradiation was establised. By using the PIC (particle-in-cell)-MCC(Monto Carlo collisions) method, the numerical simulation program of the dielectrics surface breakdown was developed, and the simulation of breakdown for different outgassing speeds was performed. The temporal evolution of the electron number and delay time of the process of breakdown in the case of different outgassing speeds were obtained. The numerical results show that when the speed of outgassing is small, the breakdown does not occur for an HPM pulse of a given duration, because the formation of the gas layer on the dielectric surface is slow. When the speed of outgassing is greater than a certain value, the breakdown occurs and the breakdown delay time shortens with the gas desorption rate increasing in a certain range. Finally, the numerical simulation results were compared with the experimental results of the direct current dielectric surface breakdown, and the trends of their development agree very well.
[1] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese)[邵 浩、 刘国治 2001 50 2387]
[2] Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬、 张 章、 魏彦玉、 孟凡宝、 范植开、 王文祥 2004 53 3990]
[3] Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、 丁 武、 董志伟 2006 55 4789]
[4] Barker R J, Schamiloglu E (Translated by Zhou C M et al.) 2004 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp313—322, p350 (in Chinese) (in Chinese) [巴 克、 谢米洛格鲁著周传明等译2004 高功率微波源与技术(北京:清华大学出版社) 第313—322页,第350页]
[5] Vaughan R M 1988 IEEE Trans. ElectronDev. 35 1172
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143(in Chinese) [蔡利兵、 王建国 2010 59 1143]
[8] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[9] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese) [蔡利兵、 王建国 2009 58 3268]
[10] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[11] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[12] Wang Y Z, Chen X 2007 Vacuum Technologies (2nd ed.) (Beijing: Beijing University of Aeronautics & Astronautics Press) pp168—178 (in Chinese) [王欲知、 陈 旭 2007 真空技术 (第二版) (北京: 北京航空航天大学出版社) 第168—178页]
[13] Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433—476 (in Chinese) [傅竹风、 胡友秋 1995空间等离子体数值模拟(合肥:安徽科学技术出版社)第433—476页]
[14] Verboncoeur J P, Alves M V, Vahedi V, Birdsall C K 1993 J. Comput. Phys. 104 321
[15] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[16] Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613 (in Chinese) [李小泽、 王建国、 童长江、 张 海 2008 57 4613]
[17] Vaughan R M 1993 IEEE Trans. Electron Dev. 40 830
[18] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[19] Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149
[20] Neuber A A, Butcher M, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593
-
[1] Shao H, Liu G Z 2001 Acta Phys. Sin. 50 2387 (in Chinese)[邵 浩、 刘国治 2001 50 2387]
[2] Gong Y B, Zhang Z, Wei Y Y, Meng F B, Fan Z K, Wang W X 2004 Acta Phys. Sin. 53 3990 (in Chinese) [宫玉彬、 张 章、 魏彦玉、 孟凡宝、 范植开、 王文祥 2004 53 3990]
[3] Hao J H, Ding W, Dong Z W 2006 Acta Phys. Sin. 55 4789 (in Chinese) [郝建红、 丁 武、 董志伟 2006 55 4789]
[4] Barker R J, Schamiloglu E (Translated by Zhou C M et al.) 2004 High-Power Microwave Sources and Technologies (Beijing: Tsinghua University Press) pp313—322, p350 (in Chinese) (in Chinese) [巴 克、 谢米洛格鲁著周传明等译2004 高功率微波源与技术(北京:清华大学出版社) 第313—322页,第350页]
[5] Vaughan R M 1988 IEEE Trans. ElectronDev. 35 1172
[6] Kishek R A, Lau Y Y 1998 Phys. Rev. Lett. 80 193
[7] Cai L B, Wang J G 2010 Acta Phys. Sin. 59 1143(in Chinese) [蔡利兵、 王建国 2010 59 1143]
[8] Kim H C, Verboncoeur J P 2006 Phys. Plasmas 13 123506
[9] Cai L B, Wang J G 2009 Acta Phys. Sin. 58 3268(in Chinese) [蔡利兵、 王建国 2009 58 3268]
[10] Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414
[11] Chang C, Liu G Z, Tang C X, Chen C H, Qiu S, Fang J Y, Hou Q 2008 Phys. Plasmas 15 093508
[12] Wang Y Z, Chen X 2007 Vacuum Technologies (2nd ed.) (Beijing: Beijing University of Aeronautics & Astronautics Press) pp168—178 (in Chinese) [王欲知、 陈 旭 2007 真空技术 (第二版) (北京: 北京航空航天大学出版社) 第168—178页]
[13] Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishers) pp433—476 (in Chinese) [傅竹风、 胡友秋 1995空间等离子体数值模拟(合肥:安徽科学技术出版社)第433—476页]
[14] Verboncoeur J P, Alves M V, Vahedi V, Birdsall C K 1993 J. Comput. Phys. 104 321
[15] Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65
[16] Li X Z, Wang J G, Tong C J, Zhang H 2008 Acta Phys. Sin. 57 4613 (in Chinese) [李小泽、 王建国、 童长江、 张 海 2008 57 4613]
[17] Vaughan R M 1993 IEEE Trans. Electron Dev. 40 830
[18] Kim H C, Verboncoeur J P 2005 Phys. Plasmas 12 123504
[19] Krile J T, Neuber A A, Dickens J C, Krompholz H G 2005 IEEE Trans. Plasma Sci. 33 1149
[20] Neuber A A, Butcher M, Krompholz H, Hatfield L L, Kristiansen M 2000 IEEE Trans. Plasma Sci. 28 1593
Catalog
Metrics
- Abstract views: 9435
- PDF Downloads: 1011
- Cited By: 0