Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Failure analysis of GaN-based Light-emitting diode with hole vertical structure

Fu Min Wen Shang-Sheng Xia Yun-Yun Xiang Chang-Ming Ma Bing-Xu Fang Fang

Citation:

Failure analysis of GaN-based Light-emitting diode with hole vertical structure

Fu Min, Wen Shang-Sheng, Xia Yun-Yun, Xiang Chang-Ming, Ma Bing-Xu, Fang Fang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Light-emitting diode (LED) failure mechanism plays an important role in studying and manufacturing LEDs. In this paper, X-ray perspective instrument is used to carry out the non-invasive and real-time X-ray imaging detection of the representative LED packaging products purchased from 5 Chinese companies. A large number of the welded voids are founded in the thermal pad and the void ratio of thermal pad, which represents the ratio of void area to pad area, is more than 30% for all samples. 1 W warm white light LED of GaN-based vertical via structure is selected to study the mechanism of short-circuit invalidation. The method is carried out by the following steps. Firstly, the surface morphologies of failure samples are compared with those of normal samples by visual observation. Secondly, antistatic electric capacity testing instrument is used to detect the existences of the electrical parameter abnormalities of the failure of non-short-circuit samples. Thirdly, decapsulations are operated on samples by using Silica gel dissolving agent. And the microtopographies of the samples are characterized by optical microscope, energy dispersive spectrometer and scanning electron microscopy. Then the cross-sectional morphologies of failure samples are observed. The failure mechanism can be drawn from the characterizations mentioned above. The study shows that the failure mechanism of the vertical structure of GaN-based vias is that the existences of voids in the Ni-Sn alloy back gold layer and solid-crystal layer reduce the interface bonding strength and thermal conductivity of the LED chip. The heat building-up leads to thermal expansion of the air inside the voids, which increases the electrical stress and thermal stress distribution at the LED chip vias. Long-term heat accumulation and higher electrical stress in the through-hole region, where the chip current density is greatest, lead to the crack and break of GaN epitaxial layer, which is so brittle and fragile, around the through-hole region. It can eventually lead to short-circuit of PN junction and then failure of LED. Back gold layer is the heat-conductive and electric-conductive channel of LED. The concentrations of thermal stress and electrical stress caused by voids in the back gold layer further lead to the uneven current distribution on the chip. This is the main reason why GaN epitaxial layer cracks and breaks. Voids in the back gold layer and solid-crystal layer are the direct and indirect causes of LED short-circuit failure, respectively. Therefore, the packaging process should be standardized to avoid the void occurrence, based on the reasons why voids exist. It can finally improve reliability of LED.
      Corresponding author: Wen Shang-Sheng, shshwen@scut.edu.cn
    • Funds: Project supported by the Guangdong Province Applied Science and Technology Development,China (Grant No.2015B010134001),the Guangdong Province Sail Plans to Introduce a Special Team of Innovation and Entrepreneurship,China (Grant No.2015YT02C093),and the Guangzhou City Collaborative Innovation Major Projects,China (Grant No.201604010006).
    [1]

    Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175

    [2]

    Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]

    [3]

    Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]

    [4]

    Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]

    [5]

    Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]

    [6]

    Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327

    [7]

    Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609

    [8]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102

    [9]

    Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]

    [10]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]

    [11]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]

    [12]

    Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]

    [13]

    Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111

    [14]

    Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]

    [15]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]

    [16]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113

    [17]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109

    [18]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916

    [19]

    Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]

    [20]

    Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409

    [21]

    Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233

    [22]

    Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794

  • [1]

    Yeh N C, Chung J P 2009Renew. Sust. Energ. Rev. 13 2175

    [2]

    Fu M, Wen S S, Chen H W, Ma B X 2016Chin. J. Lumin. 37 366(in Chinese)[符民, 文尚胜, 陈浩伟, 马丙戌2016发光学报37 366]

    [3]

    Dong L, Liu H, Wang Y, Sun Q, Liu Y, Xin D, Jin L 2014Acta Phot. Sin. 43 50(in Chinese)[董丽, 刘华, 王尧, 孙强, 刘英, 辛迪, 荆雷2014光子学报43 50]

    [4]

    Xia Y Y, Wen S S, Fang F 2016Chin. J. Lumin. 37 1002(in Chinese)[夏云云, 文尚胜, 方方2016发光学报37 1002]

    [5]

    Zou S P, Wu B X, Wan Z P, Tang H L, Tang Y 2016Chin. J. Lumin. 37 124(in Chinese)[邹水平, 吴柏禧, 万珍平, 唐洪亮, 汤勇2016发光学报37 124]

    [6]

    Liu W J, Xiao L H, Jiang Y Z, Weng G E, L X Q, Huang H J, Chen M, Cai X M, Lei Y Y, Zhang B P 2012Opt. Mater. 34 1327

    [7]

    Tsai Y J, Lin R C, Hu H L, Hsu C P, Wen S Y, Yang C C 2013IEEE Photon. Tech. L. 25 609

    [8]

    Tian T, Wang L C, Guo E Q, Liu Z Q, Zhan T, Guo J X, Yi X Y, Li J, Wang G H 2014J. Phys. D:Appl. Phys. 47 115102

    [9]

    Wang H, Yun F, Liu S, Huang Y P, Wang Y, Zhang W H, Wei Z H, Ding W, Li Y F, Zhang Y, Guo M F 2015Acta Phys. Sin. 64 028501(in Chinese)[王宏, 云峰, 刘硕, 黄亚平, 王越, 张维涵, 魏政鸿, 丁文, 李虞锋, 张烨, 郭茂峰2015 64 028501]

    [10]

    Liu Z H, Zhang L L, Li Q F, Zhang R, Xiu X Q, Xie Z L, Shan Y 2014Acta Phys. Sin. 63 207304(in Chinese)[刘战辉, 张李骊, 李庆芳, 张荣, 修向前, 谢自力, 单云2014 63 207304]

    [11]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008Acta Phys. Sin. 57 7860(in Chinese)[熊传兵, 江风益, 王立, 方文卿, 莫春兰2008 57 7860]

    [12]

    Fan J M, Wang L C, Liu Z Q 2009J. Optoe. Laser 8 994(in Chinese)[樊晶美, 王良臣, 刘志强2009光电子8 994]

    [13]

    Wang S J, Uang K M, Chen S L, Yang Y C, Chang S C, Chen T M, Chen C H, Liou B W 2005Appl. Phys. Lett. 87 011111

    [14]

    Liu L, Hu X L, Wang H 2016Chin. J. Lumin. 37 338(in Chinese)[刘丽, 胡晓龙, 王洪2016发光学报37 338]

    [15]

    Huang B B, Xiong C B, Zhang C Y, Huang J F, Wang G X, Tang Y W, Quan Z J, Xu L Q, Zhang M, Wang L, Fang W Q, Liu J L, Jiang F Y 2014Acta Phys. Sin. 63 217806(in Chinese)[黄斌斌, 熊传兵, 张超宇, 黄基锋, 王光绪, 汤英文, 全知觉, 徐龙权, 张萌, 王立, 方文卿, 刘军林, 江风益2014 63 217806]

    [16]

    Wang W K, Huang S Y, Huang S H, Wen K S, Wuu D S, Horng R H 2006Appl. Phys. Lett. 88 181113

    [17]

    Shchekin O B, Epler J E, Trottier T A, Margalith T, Steigerwald D A, Holcomb M O, Martin P S, Krames M R 2006Appl. Phys. Lett. 89 071109

    [18]

    Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P, Nakamuraa S 2004Appl. Phys. Lett. 95 3916

    [19]

    Wang M R 2010M. S. Thesis (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[王美荣2010硕士学位论文(成都:电子科技大学)]

    [20]

    Otiaba K C, Bhatti R S, Ekere N N, Mallik S, Alam M O, Amalu E H, Ekpu M 2012Microelectron. Reliab. 52 1409

    [21]

    Tan L X, Jia L, Wang K, Liu S 2009IEEE Trans. Electron. Packag. Manuf. 32 233

    [22]

    Fleischera A C, Chang L H, Johnson B C 2006Microelectron. Reliab. 46 794

  • [1] Zhang Fu-Ping, Li Xi-Qin, Du Jin-Mei, Liu Yu-Sheng, Ye Fu-Qing. Failure distribution and reliable analysis of ferroelectric ceramics under pulsed electric field. Acta Physica Sinica, 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [2] Liu Ju, Cao Yi-Wei, Lv Quan-Jiang, Yang Tian-Peng, Mi Ting-Ting, Wang Xiao-Wen, Liu Jun-Lin. Influence of period number of superlattice electron barrier layer on the performance of AlGaN-based deep ultraviolet LED. Acta Physica Sinica, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [3] Wu Xiao-Xu, Long Jun-Hua, Sun Qiang-Jian, Wang Xia, Chen Zhi-Tao, Yu Meng-Lu, Luo Xiao-Long, Li Xue-Fei, Zhao Hu-Yin, Lu Shu-Long. Study of flexible packing and stability of GaInP/GaAs solar cells. Acta Physica Sinica, 2023, 72(13): 138803. doi: 10.7498/aps.72.20230352
    [4] Wang Qi-Yu, Wang Shuo, Zhou Ge, Zhang Jie-Nan, Zheng Jie-Yun, Yu Xi-Qian, Li Hong. Progress on the failure analysis of lithium battery. Acta Physica Sinica, 2018, 67(12): 128501. doi: 10.7498/aps.67.20180757
    [5] Luo Yang, Wang Ya-Nan. Physical hardware trojan failure analysis and detection method. Acta Physica Sinica, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [6] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [7] Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot. Acta Physica Sinica, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [8] Cao Lei, Liu Hong-Xia. Study on the self-heating effect in silicon-on-insulator devices with SOANN buried oxide. Acta Physica Sinica, 2012, 61(17): 177301. doi: 10.7498/aps.61.177301
    [9] Song Wei-Cai, Zhang Yong-Jin. Reliability of multi-state and multi-subsystem below stress-strength interference. Acta Physica Sinica, 2011, 60(2): 021201. doi: 10.7498/aps.60.021201
    [10] Zhou Wen, Liu Hong-Xia. Quantitative analysis on median-time-to-fail of copper interconnect with lose object defects. Acta Physica Sinica, 2009, 58(11): 7716-7721. doi: 10.7498/aps.58.7716
    [11] Zhang Yong-Jin, Wang Zhong-Zhi. Cumulative damage model and parameter estimate about a kind of time-sharing redundant system. Acta Physica Sinica, 2009, 58(9): 6074-6079. doi: 10.7498/aps.58.6074
    [12] Zhang Yi-Min, Zhang Xu-Fang. Reliability analysis of double random Duffing system. Acta Physica Sinica, 2008, 57(7): 3989-3995. doi: 10.7498/aps.57.3989
    [13] Wang Jun, Wang Lei, Dong Ye-Min, Zou Xin, Shao Li, Li Wen-Jun, Steve Yang. Mechanism and impact of the double-hump substrate current in high-voltage double diffused drain MOS transistors. Acta Physica Sinica, 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [14] Xie Guo-Feng, He Xu-Hong, Tong Jie-Juan, Zheng Yan-Hua. Calculating physical failure probability of HTR-10’s residual heat removal system by response surface method. Acta Physica Sinica, 2007, 56(6): 3192-3197. doi: 10.7498/aps.56.3192
    [15] Hu Jin, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, Zhou Jiang. Noise as a representation for reliability of light emitting diode. Acta Physica Sinica, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [16] Zhao Yi, Wan Xing-Gong. Substrate and process dependence of gate oxide reliability of 0.18μm dual gate CMOS process. Acta Physica Sinica, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
    [17] Liu Hong-Xia, Zheng Xue-Feng, Hao Yue. Generation mechanism of stress induced leakage current in flash memory cell. Acta Physica Sinica, 2005, 54(12): 5867-5871. doi: 10.7498/aps.54.5867
    [18] Song Guo-Feng, Gan Qiao-Qiang, Qu Xin, Fang Pei-Yuan, Gao Jian-Xia, Cao Qing, Xu Jun, Kang Xiang-Ning, Xu Yun, Zhong Yuan, Yang Guo-Hua, Chen Liang-Hui. Fabrication process and power and lifetime characteristics of very-small-aperture laser. Acta Physica Sinica, 2005, 54(12): 5609-5613. doi: 10.7498/aps.54.5609
    [19] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [20] CHAI ZHEN-MING. RELIABILITY OF CIRCUIT ELEMENTS BY REDUNDANCY METHOD. Acta Physica Sinica, 1964, 20(8): 705-719. doi: 10.7498/aps.20.705
Metrics
  • Abstract views:  5835
  • PDF Downloads:  211
  • Cited By: 0
Publishing process
  • Received Date:  22 October 2016
  • Accepted Date:  10 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map