搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱

彭亚晶 孙爽 宋云飞 杨延强

引用本文:
Citation:

液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱

彭亚晶, 孙爽, 宋云飞, 杨延强

Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules

Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang
PDF
导出引用
  • 构建时间分辨相干反斯托克斯拉曼散射(CARS)光谱系统,从微观层次研究硝基甲烷的分子相干振动动力学特性.实验中采用超连续白光作为斯托克斯光,通过调整斯托克斯光的时间延迟,得到不同振动模式的CARS光谱.通过对振动弛豫曲线的拟合,获得硝基甲烷分子不同振动模式的振动失相时间.结果表明CH键伸缩振动比CN键伸缩振动更容易受热声子的影响.在热加载下,硝基甲烷分子的CH键有望首先被激发并引起初始化学反应.
    The initial decomposition micro-mechanism of energetic materials has attracted much attention because it is a critical factor for the safe use of energetic materials. The thermally triggered chemical reactions are usually related to the vibrational properties of molecules. A time-resolved coherent anti-Stokes Raman scattering (CARS) spectrum system is constructed to study the molecular coherent vibrational dynamics of nitromethane at a microscopic level for clarifying the relation of molecular vibration to initial chemical reaction. In this experiment, the ultra-continuous white light is used as Stokes light, and the CARS spectra of different vibrational modes can be obtained by adjusting the time delay of the Stokes light. The vibrational dephasing time of different chemical bonds in nitromethane is provided by fitting the vibrational relaxation curves. The dephasing time of the CH stretching vibration located at 3000 cm-1 is shown to be 0.18 ps, which is far less than the dephasing time 6.2 ps of the CN stretching vibration located at 917 cm-1. The vibrational dephasing time is closely related to thermal collision for liquid nitromethane system without intermolecular hydrogen bond, that is, the scattering of thermal phonons causes the dephasing of coherent vibration. Therefore, the stretching vibration of the CH bond is more easily affected by the thermal phonon than the stretching vibration of the CN bond. The CH bond of nitromethane molecule is expected to be excited first, causing an initial chemical reaction under thermal loading.
      通信作者: 宋云飞, songyunfei@caep.cn;yqyang@hit.edu.cn ; 杨延强, songyunfei@caep.cn;yqyang@hit.edu.cn
    • 基金项目: 辽宁省自然科学基金(批准号:2015020248)和中国工程物理研究院流体物理研究所基金(批准号:HX2016140)资助的课题.
      Corresponding author: Song Yun-Fei, songyunfei@caep.cn;yqyang@hit.edu.cn ; Yang Yan-Qiang, songyunfei@caep.cn;yqyang@hit.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2015020248) and the Fund of Institute of Fluid Physics of China Academy of Engineering Physics (Grant No. HX2016140).
    [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

  • [1]

    Peng Y J, Ye Y Q 2015 Chemistry 78 693 (in Chinese)[彭亚晶,叶玉清 2015 化学通报 78 693]

    [2]

    Conner R W, Dlott D D 2012 J. Phys. Chem. C 116 14737

    [3]

    Rossi C, Zhang K L, Estve D, Alphonse P 2007 J. Microelectromech. Syst. 16 919

    [4]

    Peng Y J, Song Y F, Cai K D 2015 Nanoaluminum Composite Energetic Materials (Beijing: Chemical Industry Press) p46 (in Chinese)[彭亚晶, 宋云飞, 蔡克迪 2015 纳米铝复合含能材料 (北京: 化学工业出版社) 第46页]

    [5]

    Liu Y, Jiang Y T, Zhang T L, Feng C G, Yang L 2015 J. Therm. Anal. Calorim. 119 659

    [6]

    Pagoria P F, Lee G S, Mitchell A R, Schmidt R D 2002 Thermochim. Acta 384 187

    [7]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [8]

    Badgujar D, Talawar M, Asthana S, Mahulikar P 2008 J. Hazard. Mater. 151 289

    [9]

    Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder A, Gandhe B 2009 J. Hazard. Mater. 161 589

    [10]

    Namboodiri V V, Ahmed M, Podagatlapalli G K, Singh A K 2015 Proc. Indian Natl. Sci. Acad. 81 525

    [11]

    Wu H L, Song Y F, Yu G Y, Chen X L, Yang Y Q 2016 J. Raman Spectrosc. 47 1213

    [12]

    Duan X H, Li W P, Pei C H, Zhou X Q 2013 J. Mol. Model. 19 3893

    [13]

    Shan T, Thompson A P 2014 J. Phys. Conf. Ser. 500 172009

    [14]

    Chu G B, Shui M, Song Y F, Xu T, Gu Y Q, Yang Y Q 2015 J. Chem. Phys. 28 49

    [15]

    Cianetti S, Negrerie M, Vos M H, Martin J L, Kruglik S G 2004 J. Am. Chem. Soc. 126 13932

    [16]

    Chan P Y, Kwok W M, Lam S K, Phillips D L 2005 J. Am. Chem. Soc. 127 8246

    [17]

    Winey J M, Gupta Y M 1997 J. Phys. Chem. B 101 10733

    [18]

    Winey J M, Duvall G E, Knudson M D, Gupta Y M 2000 J. Chem. Phys. 113 7492

    [19]

    Cataliotti R S, Foggi P, Giorgini M G, Mariani L, Morresi A, Paliani G 1993 J. Chem. Phys. 98 4372

    [20]

    Hill J R, Moore D S, Schmidt S C, Storm C B 1991 J. Chem. Phys. 95 3039

    [21]

    Shkurinov A, Jonusauskast G, Rulliere C 1994 J. Raman Spectrosc. 25 359

    [22]

    Dogariu A, Pidwerbetsky A 2012 Lasers, Sources, and Related Photonic Devices, OSA Technical Digest pLM1B.2

    [23]

    Guray T, Franken J, Hambir S A, Hare D E, Dlott D D 1997 Phys. Rev. Letts. 78 4585

    [24]

    Yang Y, Hambir A A, Dlott D D 2002 Shock Waves 12 129

    [25]

    Yang Y Q, Sun Z Y, Wang S F, Dlott D D 2003 J. Phys. Chem. B 107 4485

    [26]

    Merrick J P, Moran D, Radom L 2007 J. Phys. Chem. A 111 11683

    [27]

    Pangilinan G I, Gupta Y M 1994 J. Phys. Chem. 98 4522

    [28]

    Megyes T, Blint S, Grsz T, Radnai T, Bak I 2007 J. Chem. Phys. 126 164507

  • [1] 杨文斌, 张华磊, 齐新华, 车庆丰, 周江宁, 白冰, 陈爽, 母金河. 非平衡等离子体流场相干反斯托克斯拉曼散射光谱计算及振转温度测量.  , 2024, 73(15): 154202. doi: 10.7498/aps.73.20240455
    [2] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底.  , 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [3] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理.  , 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [4] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性.  , 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [5] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [6] 郑娟娟, 姚保利, 邵晓鹏. 基于光强传输方程相位成像的宽场相干反斯托克斯拉曼散射显微背景抑制.  , 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [7] 范俊宇, 郑朝阳, 苏艳, 赵纪军. 单轴压缩下固态硝基苯的第一性原理研究.  , 2017, 66(3): 036101. doi: 10.7498/aps.66.036101
    [8] 刘双龙, 刘伟, 陈丹妮, 屈军乐, 牛憨笨. 相干反斯托克斯拉曼散射显微成像技术研究.  , 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [9] 张赛文, 陈丹妮, 刘双龙, 刘伟, 牛憨笨. 纳米分辨相干反斯托克斯拉曼散射显微成像.  , 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [10] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响.  , 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [11] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析.  , 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [12] 刘双龙, 刘伟, 陈丹妮, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术中空心光束的形成.  , 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [13] 尹君, 余锋, 侯国辉, 梁闰富, 田宇亮, 林子扬, 牛憨笨. 多色宽带相干反斯托克斯拉曼散射过程的理论与实验研究.  , 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [14] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析.  , 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [15] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [16] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强.  , 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [17] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料.  , 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [18] 赵新新, 陶向明, 宓一鸣, 季鑫, 汪丽莉, 吴建宝, 谭明秋. Ru(0001) 表面BaO吸附层的原子结构和氮分子的吸附性质.  , 2012, 61(13): 136802. doi: 10.7498/aps.61.136802
    [19] 于凌尧, 尹君, 万辉, 刘星, 屈军乐, 牛憨笨, 林子扬. 基于超连续光谱激发的时间分辨相干反斯托克斯拉曼散射方法与实验研究.  , 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [20] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
计量
  • 文章访问数:  6810
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-14
  • 修回日期:  2017-09-28
  • 刊出日期:  2019-01-20

/

返回文章
返回
Baidu
map