Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High pressure synthesis of nanotwinned ultrahard materials

Xu Bo Tian Yong-Jun

Citation:

High pressure synthesis of nanotwinned ultrahard materials

Xu Bo, Tian Yong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this review, we present our recent research progress in superhard materials, with specially focusing on two topics. One topic is to understand hardness microscopically and establish the quantitative relationship between hardness and atomic parameters of crystal, which can be used to guide the design of novel superhard crystals. The other topic is to identify the fundamental principle and technological method to enhance the comprehensive performances (i.e., hardness, fracture toughness, and thermal stability) of superhard materials, and to synthesize high-performance superhard materials. Starting from the chemical bonds associated with crystal hardness and electronic structure, we propose a microscopic understanding of the indentation hardness as the combined resistance of chemical bonds in a material to indentation. Under this assumption, we establish the microscopic hardness model of covalent single crystals and further generalize it to polycrystalline materials. According to the polycrystalline hardness model, we successfully synthesize nanotwinned cubic boron nitride and diamond bulks under high pressure and high temperature. These materials exhibit simultaneous improvements in hardness, fracture toughness, and thermal stability. We also clarify a long-standing controversy about the criterion for performing a reliable indentation hardness measurement. Our research points out a new direction for developing the high-performance superhard materials, and promises innovations in both machinery processing industry and high pressure science.
      Corresponding author: Tian Yong-Jun, fhcl@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525205, 51421091, 51332005) and the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (Grant No. E2014203150).
    [1]

    Kanyanta V 2016 Hard, Superhard and Ultrahard Materials:An Overview in:Kanyanta V (Ed.) Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials (Cham:Springer International Publishing) p1

    [2]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [3]

    Wentorf R H 1957 J. Chem. Phys. 26 956

    [4]

    Westraadt J E, Sigalas I, Neethling J H 2015 Int. J. Refract. Met. Hard Mater. 48 286

    [5]

    Brookes C A, Brookes E J 1991 Diamond Relat. Mater. 1 13

    [6]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [7]

    Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V, Zhao Y 2004 Nat. Mater. 3 576

    [8]

    Chaudhri M M, Lim Y Y 2005 Nat. Mater. 4 4

    [9]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250

    [10]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    Simunek A, Vackar J 2006 Phys. Rev. Lett. 96 085501

    [12]

    Li K Y, Wang X T, Zhang F F, Xue D F 2008 Phys. Rev. Lett. 100 235504

    [13]

    Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O, Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912

    [14]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [15]

    Dubrovinskaia N, Dub S, Dubrovinsky L 2006 Nano Lett. 6 824

    [16]

    Solozhenko V L, Kurakevych O O, Le Godec Y 2012 Adv. Mater. 24 1540

    [17]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385

    [18]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [19]

    Veprek S 2013 J. Vac. Sci. Technol. A 31 050822

    [20]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    [21]

    Zhao Z, Xu B, Tian Y 2016 Annu. Rev. Mater. Res. 46 383

    [22]

    Yeung M T, Mohammadi R, Kaner R B 2016 Annu. Rev. Mater. Res. 46 465

    [23]

    Teter D M 1998 MRS Bull. 23 22

    [24]

    Liu A Y, Cohen M L 1989 Science 245 841

    [25]

    Gilman J J 1973 Hardness–A Strength Microprobe in:Westbrook J H, Conrad H (Ed.) The Science of Hardness Testing and its Research Applications (Metals Park:American Society for Metals)

    [26]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [27]

    Sangiovanni D G, Hultman L, Chirita V 2011 Acta Mater. 59 2121

    [28]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184

    [29]

    Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y, Wang H T 2008 J. Appl. Phys. 104 023503

    [30]

    Ceder G 1998 Science 280 1099

    [31]

    Li C, Li J C, Jiang Q 2010 Solid State Commun. 150 1818

    [32]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713

    [33]

    Woodley S M, Catlow R 2008 Nat. Mater. 7 937

    [34]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [35]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [36]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [37]

    Lonie D C, Zurek E 2011 Comput. Phys. Commun. 182 372

    [38]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [39]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747

    [40]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [41]

    Yip S 2004 Nat. Mater. 3 11

    [42]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102

    [43]

    Halperin W P 1986 Rev. Mod. Phys. 58 533

    [44]

    Khan M A M, Kumar S, Ahamed M 2015 Mater. Sci. Semicond. Process. 30 169

    [45]

    Chang Y K, Hsieh H H, Pong W F, Tsai M H, Chien F Z, Tseng P K, Chen L C, Wang T Y, Chen K H, Bhusari D M, Yang J R, Lin S T 1999 Phys. Rev. Lett. 82 5377

    [46]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, McMurry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979

    [47]

    Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A 2005 Appl. Phys. Lett. 87 083106

    [48]

    Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H, Bi Y, Leng Y, He D W 2015 Appl. Phys. Lett. 106 121901

    [49]

    Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, Ledbetter H 2013 Nat. Commun. 4 2343

    [50]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [51]

    Sumiya H, Harano K, Irifune T 2008 Rev. Sci. Instrum. 79 056102

    [52]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [53]

    Sumiya H, Irifune T 2007 J. Mater. Res. 22 2345

    [54]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [55]

    Lu L, Shen Y F, Chen X H, Qian L H, Lu K 2004 Science 304 422

    [56]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [57]

    Shan Z W, Lu L, Minor A M, Stach E A, Mao S X 2008 JOM 60 71

    [58]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 141

    [59]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903

    [60]

    Hu S L, Yang J L, Liu W, Dong Y G, Cao S R, Liu J 2011 J. Solid State Chem. 184 1598

    [61]

    Yang C C, Li S 2008 J. Phys. Chem. C 112 1423

    [62]

    Li B, Sun H, Chen C 2014 Nat. Commun. 5 4965

    [63]

    Li B, Sun H, Chen C 2016 Phys. Rev. Lett. 117 116103

    [64]

    Meyer E 1908 Z. Ver. Dtsch. Ing. 52 645

    [65]

    Xu B, Tian Y J 2015 J. Phys. Chem. C 119 5633

    [66]

    Luo X, Liu Z, Xu B, Yu D, Tian Y, Wang H T, He J 2010 J. Phys. Chem. C 114 178501

    [67]

    Roundy D, Cohen M 2001 Phys. Rev. B 64 212103

    [68]

    Jensen C P, Jorgensen J F, Garnaes J, Picotto G B, Gori G 1998 J. Test. Eval. 26 532

    [69]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [70]

    Chen J, Jin T, Tian Y 2016 Sci. China:Technol. Sci. 59 876

    [71]

    Wheeler J M, Raghavan R, Wehrs J, Zhang Y, Erni R, Michler J 2016 Nano Lett. 16 812

    [72]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [73]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

  • [1]

    Kanyanta V 2016 Hard, Superhard and Ultrahard Materials:An Overview in:Kanyanta V (Ed.) Microstructure-Property Correlations for Hard, Superhard, and Ultrahard Materials (Cham:Springer International Publishing) p1

    [2]

    Bundy F P, Hall H T, Strong H M, Wentorf R H 1955 Nature 176 51

    [3]

    Wentorf R H 1957 J. Chem. Phys. 26 956

    [4]

    Westraadt J E, Sigalas I, Neethling J H 2015 Int. J. Refract. Met. Hard Mater. 48 286

    [5]

    Brookes C A, Brookes E J 1991 Diamond Relat. Mater. 1 13

    [6]

    Brazhkin V V, Lyapin A G, Hemley R J 2002 Philos. Mag. A 82 231

    [7]

    Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V, Zhao Y 2004 Nat. Mater. 3 576

    [8]

    Chaudhri M M, Lim Y Y 2005 Nat. Mater. 4 4

    [9]

    Huang Q, Yu D, Xu B, Hu W, Ma Y, Wang Y, Zhao Z, Wen B, He J, Liu Z, Tian Y 2014 Nature 510 250

    [10]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [11]

    Simunek A, Vackar J 2006 Phys. Rev. Lett. 96 085501

    [12]

    Li K Y, Wang X T, Zhang F F, Xue D F 2008 Phys. Rev. Lett. 100 235504

    [13]

    Dubrovinskaia N, Solozhenko V L, Miyajima N, Dmitriev V, Kurakevych O O, Dubrovinsky L 2007 Appl. Phys. Lett. 90 101912

    [14]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [15]

    Dubrovinskaia N, Dub S, Dubrovinsky L 2006 Nano Lett. 6 824

    [16]

    Solozhenko V L, Kurakevych O O, Le Godec Y 2012 Adv. Mater. 24 1540

    [17]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L M, Wen B, He J, Liu Z 2013 Nature 493 385

    [18]

    Haines J, Leger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [19]

    Veprek S 2013 J. Vac. Sci. Technol. A 31 050822

    [20]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93

    [21]

    Zhao Z, Xu B, Tian Y 2016 Annu. Rev. Mater. Res. 46 383

    [22]

    Yeung M T, Mohammadi R, Kaner R B 2016 Annu. Rev. Mater. Res. 46 465

    [23]

    Teter D M 1998 MRS Bull. 23 22

    [24]

    Liu A Y, Cohen M L 1989 Science 245 841

    [25]

    Gilman J J 1973 Hardness–A Strength Microprobe in:Westbrook J H, Conrad H (Ed.) The Science of Hardness Testing and its Research Applications (Metals Park:American Society for Metals)

    [26]

    Phillips J C 1970 Rev. Mod. Phys. 42 317

    [27]

    Sangiovanni D G, Hultman L, Chirita V 2011 Acta Mater. 59 2121

    [28]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184

    [29]

    Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y, Wang H T 2008 J. Appl. Phys. 104 023503

    [30]

    Ceder G 1998 Science 280 1099

    [31]

    Li C, Li J C, Jiang Q 2010 Solid State Commun. 150 1818

    [32]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713

    [33]

    Woodley S M, Catlow R 2008 Nat. Mater. 7 937

    [34]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [35]

    Amsler M, Goedecker S 2010 J. Chem. Phys. 133 224104

    [36]

    Pickard C J, Needs R J 2011 J. Phys.:Condens. Matter 23 053201

    [37]

    Lonie D C, Zurek E 2011 Comput. Phys. Commun. 182 372

    [38]

    Zhang X, Wang Y, L J, Zhu C, Li Q, Zhang M, Li Q, Ma Y 2013 J. Chem. Phys. 138 114101

    [39]

    Hall E O 1951 Proc. Phys. Soc. London B 64 747

    [40]

    Petch N J 1953 J. Iron Steel Ins. 174 25

    [41]

    Yip S 2004 Nat. Mater. 3 11

    [42]

    Tse J S, Klug D D, Gao F M 2006 Phys. Rev. B 73 140102

    [43]

    Halperin W P 1986 Rev. Mod. Phys. 58 533

    [44]

    Khan M A M, Kumar S, Ahamed M 2015 Mater. Sci. Semicond. Process. 30 169

    [45]

    Chang Y K, Hsieh H H, Pong W F, Tsai M H, Chien F Z, Tseng P K, Chen L C, Wang T Y, Chen K H, Bhusari D M, Yang J R, Lin S T 1999 Phys. Rev. Lett. 82 5377

    [46]

    Gerberich W W, Mook W M, Perrey C R, Carter C B, Baskes M I, Mukherjee R, Gidwani A, Heberlein J, McMurry P H, Girshick S L 2003 J. Mech. Phys. Solids. 51 979

    [47]

    Dubrovinskaia N, Dubrovinsky L, Crichton W, Langenhorst F, Richter A 2005 Appl. Phys. Lett. 87 083106

    [48]

    Liu G D, Kou Z L, Yan X Z, Lei L, Peng F, Wang Q M, Wang K X, Wang P, Li L, Li Y, Li W T, Wang Y H, Bi Y, Leng Y, He D W 2015 Appl. Phys. Lett. 106 121901

    [49]

    Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, Ledbetter H 2013 Nat. Commun. 4 2343

    [50]

    Sumiya H, Harano K 2012 Diamond Relat. Mater. 24 44

    [51]

    Sumiya H, Harano K, Irifune T 2008 Rev. Sci. Instrum. 79 056102

    [52]

    Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, Abakumov A M 2012 Nat. Commun. 3 1163

    [53]

    Sumiya H, Irifune T 2007 J. Mater. Res. 22 2345

    [54]

    Lu L, Chen X, Huang X, Lu K 2009 Science 323 607

    [55]

    Lu L, Shen Y F, Chen X H, Qian L H, Lu K 2004 Science 304 422

    [56]

    Lu K, Lu L, Suresh S 2009 Science 324 349

    [57]

    Shan Z W, Lu L, Minor A M, Stach E A, Mao S X 2008 JOM 60 71

    [58]

    Bundy F P, Bassett W A, Weathers M S, Hemley R J, Mao H U, Goncharov A F 1996 Carbon 34 141

    [59]

    Solozhenko V L, Turkevich V Z, Holzapfel W B 1999 J. Phys. Chem. B 103 2903

    [60]

    Hu S L, Yang J L, Liu W, Dong Y G, Cao S R, Liu J 2011 J. Solid State Chem. 184 1598

    [61]

    Yang C C, Li S 2008 J. Phys. Chem. C 112 1423

    [62]

    Li B, Sun H, Chen C 2014 Nat. Commun. 5 4965

    [63]

    Li B, Sun H, Chen C 2016 Phys. Rev. Lett. 117 116103

    [64]

    Meyer E 1908 Z. Ver. Dtsch. Ing. 52 645

    [65]

    Xu B, Tian Y J 2015 J. Phys. Chem. C 119 5633

    [66]

    Luo X, Liu Z, Xu B, Yu D, Tian Y, Wang H T, He J 2010 J. Phys. Chem. C 114 178501

    [67]

    Roundy D, Cohen M 2001 Phys. Rev. B 64 212103

    [68]

    Jensen C P, Jorgensen J F, Garnaes J, Picotto G B, Gori G 1998 J. Test. Eval. 26 532

    [69]

    Nix W D, Gao H 1998 J. Mech. Phys. Solids 46 411

    [70]

    Chen J, Jin T, Tian Y 2016 Sci. China:Technol. Sci. 59 876

    [71]

    Wheeler J M, Raghavan R, Wehrs J, Zhang Y, Erni R, Michler J 2016 Nano Lett. 16 812

    [72]

    Dalladay-Simpson P, Howie R T, Gregoryanz E 2016 Nature 529 63

    [73]

    Ashcroft N W 1968 Phys. Rev. Lett. 21 1748

  • [1] Jin Zhe-Jun-Yu, Zeng Zhao-Zhuo, Cao Yun-Shan, Yan Peng. Magnon Hall effect. Acta Physica Sinica, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] Ba Jia-Yan, Chen Fu-Yang, Duan Hou-Jian, Deng Ming-Xun, Wang Rui-Qiang. Planar Hall effect in topological materials. Acta Physica Sinica, 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [3] Zhang Wei-Xi, Li Yong, Tian Chang-Hai, She Yan-Chao. Room-temperature quantum anomalous Hall effect in monolayer BaPb with large magnetocrystalline anisotropy energies. Acta Physica Sinica, 2021, 70(15): 157502. doi: 10.7498/aps.70.20210014
    [4] Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin. Blue perovskite light-emitting diodes: opportunities and challenges. Acta Physica Sinica, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [5] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [6] Bao Kuo, Ma Shuai-Ling, Xu Chun-Hong, Cui Tian. Design of ultra-hard multifunctional transition metal compounds. Acta Physica Sinica, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [7] Li Yu-Ge, Li Guan-Qun, Li Ge-Yang. Influence of modulation structure on the superhardness effect in c-VC/h-TiB2 nanomultilayer. Acta Physica Sinica, 2013, 62(1): 016801. doi: 10.7498/aps.62.016801
    [8] Zhao Yu-Long, Chen Zheng, Long Jian, Yang Tao. Phase field crystal simulation of microscopic deformation mechanism of reverse Hall-Petch effect in nanocrystalline materials. Acta Physica Sinica, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [9] Zhang Rui-Zhi, Chen Wen-Hao, Yang Lu-Na. Confinement effect and interface effects on the thermoelectric properties of nano-ceramics: theoretical study. Acta Physica Sinica, 2012, 61(18): 187201. doi: 10.7498/aps.61.187201
    [10] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [11] Wu Xiao-Yan, Kong Ming, Li Ge-Yang, Zhao Wen-Ji. Crystallization of Si3N4 on h-AlN and superhardness effect of AlN/Si3N4 nanomultilayers. Acta Physica Sinica, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [12] Yu Li-Hua, Dong Shi-Run, Xu Jun-Hua, Li Ge-Yang. Superhardness effect of TaN/TiN and NbN/TiN nanostructure multilayers and its mechanism. Acta Physica Sinica, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [13] Zhu Bao-Hua, Wang Fang-Fang, Zhang Kun, Ma Guo-Hong, Gu Yu-Zong, Guo Li-Jun, Qian Shi-Xiong. Linear and nonlinear optical properties of CdSe quantumn dots. Acta Physica Sinica, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [14] Liu Yi-Xing, Yu Ya-Bin, Zhang Li, Quan Jun. Study of the spread of the energy gap in nanostructure systems. Acta Physica Sinica, 2008, 57(11): 6751-6757. doi: 10.7498/aps.57.6751
    [15] Zhao Wen-Ji, Dong Yun-Shan, Yue Jian-Ling, Li Ge-Yang. Crystallization of Si3N4 and superhardness effect of ZrN/Si3N4 nano-multilayers. Acta Physica Sinica, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [16] Zhao Wen-Ji, Kong Ming, Huang Bi-Long, Li Ge-Yang. Effect of SiO2 crystallization on AlN/SiO2 nano-multilayers with superhardness effect. Acta Physica Sinica, 2007, 56(3): 1574-1580. doi: 10.7498/aps.56.1574
    [17] Xin Ping, Sun Cheng-Wei, Qin Fu-Wen, Wen Sheng-Ping, Zhang Qing-Yu. Room-temperature photoluminescence of ZnO/MgO multiple quantum wells deposited by reactive magnetron sputtering. Acta Physica Sinica, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [18] Kong Ming, Wei Lun, Dong Yun-Shan, Li Ge-Yang. Epitaxial growth and superhardness effect in TiN/Al2O3 nanomultilayers. Acta Physica Sinica, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [19] Liu Yan, Dong Yun-Shan, Yue Jian-Ling, Li Ge-Yang. Crystal growth and superhardness effects of ZrN/AlON nanomultilayers synthesized by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Li Ge-Yang, Li Jian-Guo. Study on the growth and superhardness of TiN/SiO22 nanomultilayers. Acta Physica Sinica, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
Metrics
  • Abstract views:  8234
  • PDF Downloads:  646
  • Cited By: 0
Publishing process
  • Received Date:  10 October 2016
  • Accepted Date:  24 October 2016
  • Published Online:  05 February 2017

/

返回文章
返回
Baidu
map