搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下固相硝基甲烷分解的分子动力学计算

张力 陈朗

引用本文:
Citation:

高压下固相硝基甲烷分解的分子动力学计算

张力, 陈朗

The effect of pressure on thermal decomposition of solid nitromethane via MD simulation

Zhang Li, Chen Lang
PDF
导出引用
  • 基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化.
    The thermal decomposition of solid nitromethane (NM) is studied by ReaxFF molecular dynamics simulations to obtain the time evolution of the mechanism of NM under high temperature and pressure. It is determined that the initial decomposition mechanism of NM is dependent on pressure effect. In the 0–3 GPa pressure regime, the initial reactions is the C–N bond dissociation and the unimolecular rearrangement connecting between NM and methyl nitrite isomers; in the 4–7 GPa, the initial pathways of NM are the intermolecular proton transfer and C–N, C–O bond rupture. In the secondary reactions step, several fragments, like H2O, NO, NO2, HONO, play a role of catalysis. The product decomposition of NM contains many different structures of carbon clusters, and the configuration of cluster is dependent on pressure.
    [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • [1]

    Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72

    [2]

    Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351

    [3]

    Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667

    [4]

    Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33

    [5]

    Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395

    [6]

    Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113

    [7]

    Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1

    [8]

    Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 58 655]

    [9]

    Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462

    [10]

    Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237

    [11]

    Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 58 4144]

    [12]

    Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407

    [13]

    Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72

    [14]

    Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302

    [15]

    Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011

    [16]

    Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077

    [17]

    van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396

    [18]

    Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534

    [19]

    Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514

    [20]

    Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181

    [21]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [22]

    Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996

    [23]

    Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675

    [24]

    Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261

    [25]

    Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384

    [26]

    Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302

    [27]

    Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964

    [28]

    Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024

    [29]

    Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961

    [30]

    Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301

    [31]

    Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696

    [32]

    Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516

    [33]

    Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57

    [34]

    Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]

    [35]

    Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301

    [36]

    Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502

    [37]

    Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]

    [38]

    Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005

    [39]

    Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619

    [40]

    Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 54 2847]

    [41]

    Ornellas D L1968 J. Phys. Chem. 72 2390

  • [1] 郑利娟, 程天海, 吴俣. 黑碳团簇气溶胶混合生长的红外吸收特性及长波辐射效应.  , 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [2] 李明林, 林凡, 陈越. 碳纳米锥力学特性的分子动力学研究.  , 2013, 62(1): 016102. doi: 10.7498/aps.62.016102
    [3] 李春丽, 段海明, 买力坦, 开来木. Aln(n=13–32)团簇熔化行为的分子动力学模拟研究.  , 2013, 62(19): 193104. doi: 10.7498/aps.62.193104
    [4] 魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召. InAs(001)表面脱氧动力学分析.  , 2013, 62(22): 226801. doi: 10.7498/aps.62.226801
    [5] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟.  , 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [6] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移.  , 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [7] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟.  , 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [8] 刘建廷, 段海明. 不同势下铱团簇结构和熔化行为的分子动力学模拟.  , 2009, 58(7): 4826-4834. doi: 10.7498/aps.58.4826
    [9] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [10] 徐京城, 赵纪军. 液态硝基甲烷热分解行为及压力效应的第一性原理研究.  , 2009, 58(6): 4144-4149. doi: 10.7498/aps.58.4144
    [11] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟.  , 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [12] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解.  , 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [13] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解.  , 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [14] 杨全文, 朱如曾, 文玉华. 纳米铜团簇在常温和升温过程中能量特征的分子动力学研究.  , 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [15] 王 音, 李 鹏, 宁西京. C36团簇自组装的分子动力学研究.  , 2005, 54(6): 2847-2852. doi: 10.7498/aps.54.2847
    [16] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究.  , 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] 袁 喆, 何春龙, 王晓路, 刘海涛, 李家明. 团簇的第一原理分子动力学计算研究:价键优选法.  , 2005, 54(2): 628-635. doi: 10.7498/aps.54.628
    [18] 刘 颖, 葛培文, 苏少奎, 张丽娟, 王云平. Mn12-Ac磁性分子团簇单晶的热重-差热分析与结构转变.  , 2004, 53(11): 4015-4020. doi: 10.7498/aps.53.4015
    [19] 王 坚, 王绍青. 硅团簇熔化行为的紧束缚分子动力学研究.  , 2003, 52(11): 2854-2858. doi: 10.7498/aps.52.2854
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟.  , 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  6544
  • PDF下载量:  1231
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-25
  • 修回日期:  2013-05-03
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map