-
基于ReaxFF, 采用NVT系综和Berendsen方法对0–7 GPa时和2500 K时固相硝基甲烷的 分解过程进行分子动力学计算, 通过分析硝基甲烷发生分解反应生成的碎片数量随时间的变化, 对不同压强下硝基甲烷的分解机理进行研究. 计算结果表明在0–3 GPa时, 初始分解路径为C–N键断裂和硝基甲烷的异构化; 在4–7 GPa 时, 初始分解路径为分子间质子转移和C–N, N–O键的断裂; 在硝基甲烷的第二阶段反应中存在H2O, NO, NO2, HONO, 硝基甲烷分子自身的催化反应. 硝基甲烷在高温高压下发生热分解反应生成碳团簇, 且团簇中碳原子的数量和碳团簇的空间构型随着压强的变化而变化.
-
关键词:
- ReaxFF 分子动力学 /
- 热分解 /
- 压强效应 /
- 碳团簇
The thermal decomposition of solid nitromethane (NM) is studied by ReaxFF molecular dynamics simulations to obtain the time evolution of the mechanism of NM under high temperature and pressure. It is determined that the initial decomposition mechanism of NM is dependent on pressure effect. In the 0–3 GPa pressure regime, the initial reactions is the C–N bond dissociation and the unimolecular rearrangement connecting between NM and methyl nitrite isomers; in the 4–7 GPa, the initial pathways of NM are the intermolecular proton transfer and C–N, C–O bond rupture. In the secondary reactions step, several fragments, like H2O, NO, NO2, HONO, play a role of catalysis. The product decomposition of NM contains many different structures of carbon clusters, and the configuration of cluster is dependent on pressure.[1] Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72
[2] Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351
[3] Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667
[4] Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33
[5] Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395
[6] Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113
[7] Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1
[8] Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 58 655]
[9] Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462
[10] Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237
[11] Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 58 4144]
[12] Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407
[13] Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72
[14] Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302
[15] Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011
[16] Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077
[17] van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[18] Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534
[19] Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514
[20] Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181
[21] Grimme S 2006 J. Comput. Chem. 27 1787
[22] Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996
[23] Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675
[24] Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261
[25] Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384
[26] Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302
[27] Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964
[28] Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024
[29] Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961
[30] Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301
[31] Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696
[32] Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516
[33] Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57
[34] Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]
[35] Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301
[36] Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502
[37] Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]
[38] Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005
[39] Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619
[40] Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 54 2847]
[41] Ornellas D L1968 J. Phys. Chem. 72 2390
-
[1] Tappan B C, Brill T B 2003 Propellents, Explosives, Pyrotechnics 28 72
[2] Russell T P, Allen T M, Gupta Y M 1977 Chem. Phys. Lett. 267 351
[3] Yang Y Q, Wang S F, Sun Z Y, Dlott D D 2004 J. Appl. Phys. 95 3667
[4] Kassoy D R, Kapila A K, Stewart D S 1989 Comb. Sci. Tech. 63 33
[5] Furutani H, Fukumura H, Masuhara H, Kambara S, Kitaguchi T, Tsukada H, Ozawa T 1998 J. Phys. Chem. B 102 3395
[6] Prasad M, Conforti P F, Garrison B J 2007 J. Appl. Phys. 101 103113
[7] Von deer Linde D, Sokolowski-Tinten K 2000 Appl. Surf Sci. 154 1
[8] Peng Y J, Liu YQ, Wang Y H, Zhang S P, Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强 2009 58 655]
[9] Piermarini G J, Block S, Miller P J 1989 J. Phys. Chem. 93 462
[10] Shaw R, Decarli, P S, Ross D S, Lee E L Stromberg H D 1979 Combust. Flame 35 237
[11] Xu J, Zhao J J 2009 Acta Phys. Sin. 58 4144 (in Chinese) [徐京城, 赵纪军 2009 58 4144]
[12] Wei D Q, Zhang F, Woo T K 2002 AIP Conf. Proc. 620 407
[13] Reed E J, Manaa M R, Laurence L E, Glaesemann K R, Joannopoulos J D 2008 Nature Phys. 4 72
[14] Chang J, Lian P, Wei D Q, Chen X R, Zhang Q M, Gong Z Z 2010 Phys. Rev. Lett. 105 188302
[15] Liu L M, Car R, Selloni A, Dabbs D M, Aksay I A, Yetter R A 2012 J. Am. Chem. Soc. 134 19011
[16] Chen Q F, Cang L C, Chen D Q, Jing F Q 2005 Chin. Phys. 14 2077
[17] van Duin A C, Dasgupta S, Lorant F, Goddard III W A 2001 J. Phys. Chem. A 105 9396
[18] Han S P, van Duin A C, Goddard III W A, Strachan A 2011 J. Phys. Chem. B 115 6534
[19] Guo F, Cheng X, Zhang H 2012 J. Phys. Chem. A 116 3514
[20] Rom N, Zybin S V, van Duin A C, Goddard III W A, Zeiri Y, Katz G, Kosloff R 2011 J. Phys. Chem. A 115 10181
[21] Grimme S 2006 J. Comput. Chem. 27 1787
[22] Trevino S F, Prince E, Hubbard C R 1980 J. Chem. Phys. 73 2996
[23] Wu C J, Fried L E 1997 J. Phys. Chem. A 101 8675
[24] Chakraborty D, Muller R P, Dasgupta S, Goddard III W A 2000 J. Phys. Chem. A 104 2261
[25] Lewis J P, Glaesemann K R, VanOpdorp K, Voth G A 2000 J. Phys. Chem. A 104 11384
[26] Chakraborty D, Muller R P, Goddard III W A 2001 J. Phys. Chem. A 105 1302
[27] Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J 2005 J. Phys. Chem. A 109 2964
[28] Manaa M R, Fried L E, Melius C F, Elstner M, Frauenheim T 2002 J. Phys. Chem. A 106 9024
[29] Xu J J, Zhao J J, Sun L 2008 Mol. Simulat. 34 961
[30] Zheng Z, Xu J J, Zhao J J 2010 High Pressure Res. 30 301
[31] Ge L N, Wei Y, Ji G F, Chen X R, Zhao F, Wei D Q 2012 J. Phys. Chem. B 116 13696
[32] Zhu W H, Huang H, Huang H J, Xiao H M 2012 J. Chem. Phys. 136 044516
[33] Wu J C, Fried L E, Yang L H, Goldman N, Baste S 2009 Nature Chem. 1 57
[34] Zhang L, Chen L, Wang C, Wu J Y 2013 Acta Phys. Chim. Sin. 29 1145 (in Chinese) [张力, 陈朗, 王晨, 伍俊英 2013 物理化学学报 29 1145]
[35] Strachan A, van Duin A C, Chakraborty D, Dasgupta S, Goddard III W A 2003 Phys. Rev. Lett. 91 98301
[36] Strachan A, Kober E M, van Duin A C, Oxgaard J, Goddard III W A 2005 J. Chem. Phys. 122 054502
[37] Zhou T T, Shi Y D, Huang F L 2012 Acta Phys. Chim. Sin. 28 2605 (in Chinese) [周婷婷, 石一丁, 黄风雷 2012 物理化学学报 28 2605]
[38] Isayev O, Gorb L, Qasim M, Leszczynski J 2008 J. Phys. Chem. B 112 11005
[39] Zhang L Z, Zybin S V, van Duin A C, Dasgupta S, Goddard III W A, Kober E M 2009 J. Phys. Chem. A 13 10619
[40] Wang Y, Li P, Ning X J 2005 Acta Phys. Sin. 54 2847 (in Chinese) [王音, 李鹏, 宁西京 2005 54 2847]
[41] Ornellas D L1968 J. Phys. Chem. 72 2390
计量
- 文章访问数: 6544
- PDF下载量: 1231
- 被引次数: 0