-
Memristor, a controllable nonlinear element, is easy to generate a chaotic signal. More significantly, it can improve the complexity of the chaotic system and the randomness of signals. Although the memristor chaotic system is a hot spot of research currently, little attention has been paid to the memristive time-delayed chaotic system. Therefore, a new memristor-based time-delayed chaotic system is proposed in this paper. We construct the time-delayed chaotic system with single delay time by using the nonlinear relationship between the memristance and charge of memristor. The existence of time delay enhances the complexity of chaotic system, which makes the system produce richer and more complex dynamics. In order to study the complex dynamic characteristics of this memristive time-delayed system, we investigate the proposed system by theoretical derivation, numerical simulation, stabilization of equilibrium points, and power spectrum. In addition, the corresponding parameter region of the stable equilibrium point of the system is discussed in detail. Then, we discuss the effect of parameter variation on the dynamic behavior of the system, and a series of phase diagrams with different time-delayed parameters and system parameters is described by numerical simulation. We find that different combinations of parameters and slight changes of parameters can make the system a completely different phase diagram, which indicates that the proposed system has rich nonlinear characteristic. Moreover, the proposed time-delayed system is used to generate pseudo random sequences, and the experimental results show that the proposed system has good self-correlation, cross-correlation, and the significant approximate entropy. According to the theoretical analyses and experimental results, we conclude that the proposed new time-delayed chaotic system has complex dynamic behavior and good randomness, which can meet the needs of the applications in spread spectrum communication, image encryption and many other fields. This research provides a significant reference for further studying the usage of memristor.
-
Keywords:
- memristor /
- time-delayed chaotic /
- stability analysis /
- randomness analysis
[1] Chua L O 1971 IEEE Trans. Circ. Theor. 18 507
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I, Reg. Papers. 58 1323
[4] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
[5] Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotech. 3 429
[6] Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurocomputing 171 23
[7] Sah M P, Yang C, Kim H, Chua L 2012 Sensors 12 3587
[8] Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364
[9] Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183
[10] Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417
[11] Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228
[12] Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯2015 64 210507]
[13] Stork M, Hrusak J, Mayer D 2009 International Conference on Electrical and Electronics Engineering, 2009 ELECO Bursa, Turkey, November 5-8, 2009 pp58-60
[14] Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205
[15] Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 1450099
[16] Cafagna D, Grassi G 2012 Nonlinear Dyn. 70 1185
[17] Yang Y F, Leng J L, Li Q D 2014 Acta Phys. Sin. 63 080502 (in Chinese)[杨芳艳, 冷家丽, 李清都2014 63 080502]
[18] Mackey M C, Glass L 1977 Science 197 287
[19] Lakshmanan M, Senthilkumar D V 2011 Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media Press) pp27-36
[20] Ikeda K, Daido H, Akimoto O 1980 Phys. Rev. Lett. 45 709
[21] Boutle I, Taylor R H S, Römer R A 2007 Am. J. Phys. 75 15
[22] Wu F X 2009 Adv. Complex Syst. 12 3
[23] Liao X X, Chen G R 2003 Int. J. Bifurcat. Chaos 13 207
[24] Lu J Q, Cao J D, Ho D W C 2008 IEEE Trans. Circuits Syst. I, Reg. Papers 55 1347
[25] Zhang X M, Chen J F, Peng J H 2011 Int. J. Bifurcat. Chaos 21 2547
[26] Guan G R, Wu C M, Jia Q 2015 Acta Phys. Sin. 64 020501 (in Chinese)[官国荣, 吴成茂, 贾倩2015 64 020501]
-
[1] Chua L O 1971 IEEE Trans. Circ. Theor. 18 507
[2] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80
[3] Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I, Reg. Papers. 58 1323
[4] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297
[5] Yang J J, Pickett M D, Li X, Ohlberg D A, Stewart D R, Williams R S 2008 Nat. Nanotech. 3 429
[6] Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurocomputing 171 23
[7] Sah M P, Yang C, Kim H, Chua L 2012 Sensors 12 3587
[8] Hu X F, Chen G R, Duan S K, Feng G 2014 In Memristor Networks (Springer International Publishing) pp351-364
[9] Itoh M, Chua L O 2008 Int. J. Bifurcat. Chaos 18 3183
[10] Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417
[11] Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 228
[12] Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯2015 64 210507]
[13] Stork M, Hrusak J, Mayer D 2009 International Conference on Electrical and Electronics Engineering, 2009 ELECO Bursa, Turkey, November 5-8, 2009 pp58-60
[14] Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205
[15] Li H F, Wang L D, Duan S K 2014 Int. J. Bifurcat. Chaos 24 1450099
[16] Cafagna D, Grassi G 2012 Nonlinear Dyn. 70 1185
[17] Yang Y F, Leng J L, Li Q D 2014 Acta Phys. Sin. 63 080502 (in Chinese)[杨芳艳, 冷家丽, 李清都2014 63 080502]
[18] Mackey M C, Glass L 1977 Science 197 287
[19] Lakshmanan M, Senthilkumar D V 2011 Dynamics of Nonlinear Time-Delay Systems (Springer Science & Business Media Press) pp27-36
[20] Ikeda K, Daido H, Akimoto O 1980 Phys. Rev. Lett. 45 709
[21] Boutle I, Taylor R H S, Römer R A 2007 Am. J. Phys. 75 15
[22] Wu F X 2009 Adv. Complex Syst. 12 3
[23] Liao X X, Chen G R 2003 Int. J. Bifurcat. Chaos 13 207
[24] Lu J Q, Cao J D, Ho D W C 2008 IEEE Trans. Circuits Syst. I, Reg. Papers 55 1347
[25] Zhang X M, Chen J F, Peng J H 2011 Int. J. Bifurcat. Chaos 21 2547
[26] Guan G R, Wu C M, Jia Q 2015 Acta Phys. Sin. 64 020501 (in Chinese)[官国荣, 吴成茂, 贾倩2015 64 020501]
Catalog
Metrics
- Abstract views: 7808
- PDF Downloads: 953
- Cited By: 0