Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source

Wu Chao-Jun Fang Li-Yi Yang Ning-Ning

Citation:

Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source

Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning
PDF
HTML
Get Citation
  • A physical memristor has an asymmetric tight hysteresis loop. In order to simulate the asymmetric tight hysteresis curve of the physical memristor more conveniently, a fractional-order diode bridge memristor model with a bias voltage source is proposed in this paper, which can continuously regulate the hysteresis loop. Firstly, based on fractional calculus theory, a fractional order model of a diode bridge memristor with a bias voltage source is established, and its electrical characteristics are analyzed. Secondly, by integrating it with the Jerk chaotic circuit, a non-homogeneous fractional order memristor chaotic circuit model with a bias voltage source is established, and the influence of bias voltage on its system dynamic behavior is studied. Once again, a fractional-order equivalent circuit model is built in PSpice and validated through circuit simulation. The experimental results are basically consistent with the numerical simulation results. Finally, the experiments on the circuit are completed in LabVIEW to validate the correctness and feasibility of the theoretical analysis. The results indicate that the fractional order memristor with bias voltage source can continuously obtain asymmetric tight hysteresis loop by adjusting the voltage of the bias voltage source. As the bias power supply voltage changes, the non-homogeneous fractional order memristor chaotic system exhibits that the period doubling bifurcation turns into chaos due to the symmetry breaking.
      Corresponding author: Fang Li-Yi, 3148130199@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51507134) and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM5068, 2021JM-449).
    [1]

    Chua L O 1971 IEEE Trans. Circuit. Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Wen S P, Wei H Q, Yan Z, Guo Z Y, Yang, Y, Huang T W, Chen Y R 2019 IEEE Trans. Netw. Sci. Eng. 7 1431Google Scholar

    [4]

    Liu S J, Wang Y Z, Fardad M, Varshney P K 2018 IEEE Circ. Syst. Mag. 18 29Google Scholar

    [5]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [6]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [7]

    郑广超, 刘崇新, 王琰 2018 67 050502Google Scholar

    Zheng G C, Liu C X, Wang Y 2018 Acta Phys. Sin. 67 050502Google Scholar

    [8]

    Li C B, Wang R, Ma X, Jiang Y C, Liu Z H 2021 Chin. Phys. B 30 201Google Scholar

    [9]

    秦铭宏, 赖强, 吴永红 2022 71 160502Google Scholar

    Qing M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [10]

    Chen M, Ren X, Wu H G, Xu Q, Bao B C 2019 Front. Inform. Tech. El. 20 1706Google Scholar

    [11]

    Wu H G, Ye Y, Chen M, Xu Q, Bao B C 2019 IEEE Access 7 145022Google Scholar

    [12]

    Wang N, Zhang G S, Kuznetsov N V, Bao H 2021 Commun. Nonlinear Sci. Numer. Simul. 92 105494Google Scholar

    [13]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893Google Scholar

    [14]

    俞亚娟, 王在华 2015 64 238401Google Scholar

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401Google Scholar

    [15]

    Ramakrishnan B, Durdu A, Rajagopal K, Akgul A 2020 AEU-Int. J. Electron. Commun. 123 153319Google Scholar

    [16]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126Google Scholar

    [17]

    Hu W P, Wang Z, Zhao Y P, Deng Z C 2020 Appl. Math. Lett. 103 106207Google Scholar

    [18]

    Kengne L K, Kengne J, Telem N A K, Pone J R M 2021 J. Circuit. Syst. Comp. 30 2150077Google Scholar

    [19]

    Kengne J, Mogue R L T, Fozin T F, Telem A N K 2019 Chaos Solitons Fractals 121 63Google Scholar

    [20]

    Cao H, Seoane J M, Sanjuán M A F 2007 Chaos Solitons Fractals 34 197Google Scholar

    [21]

    Kengne L K, Pone J R M, Tagne H T K, Kengne J 2020 AEU-Int. J. Electron. Commun. 118 153146Google Scholar

    [22]

    Wu H, Zhou J, Chen M, Xu Q, Bao B C 2022 Chaos, Solitons Fractals 154 111624Google Scholar

    [23]

    Yang N N, Xu C, Wu C J, Jia R, Liu C X 2018 Nonlinear Dyn. 97 33Google Scholar

  • 图 1  含偏置电压源忆阻器等效电路及忆阻器符号[22]

    Figure 1.  Equivalent circuit of memristor with bias voltage source and symbol of memristor[22].

    图 2  含偏置电压源的分数阶忆阻器等效电路及忆阻器符号

    Figure 2.  Equivalent circuit of fractional memristor with bias voltage source and symbol of memristor.

    图 3  含偏置电压源的分数阶忆阻器磁滞回线 (a) q1 = 0.98, Em = 0 V, 频率改变; (b) f = 200 Hz, Em = 0.1 V, 分数阶次改变; (c) q1 = 0.98, f = 200 Hz, 偏置电压改变

    Figure 3.  Hysteresis loop of fractional memristor with bias voltage source: (a) q1 = 0.98, Em = 0 V, frequency change; (b) f = 200 Hz, Em = 0.1 V, fractional order change; (c) q1 = 0.98, f = 200 Hz, bias voltage change.

    图 4  V-I曲线的不对称程度

    Figure 4.  Degree of asymmetry of the V-I curve.

    图 5  非齐次分数阶忆阻混沌系统

    Figure 5.  Non homogeneous fractional order memristor chaotic system.

    图 6  参数d变化的平衡点在x1-x4平面上的分布

    Figure 6.  Distribution of equilibrium points for parameter d changes on the x1-x4 plane.

    图 7  整数阶系统分岔图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V)

    Figure 7.  Bifurcation diagram of integer order system, where red (+) and green (–) represent system initial values of (±0.45 V, 0 V, 0 V, 0 V).

    图 8  不同偏置电压Em下, 整数阶系统由周期到混沌相图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V)(a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V

    Figure 8.  Phase diagram of integer order systems from period to chaos at different bias voltage Em, where red (+) and green (–) represent initial values of (±0.45 V, 0 V, 0 V, 0 V) for the system: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V.

    图 9  整数阶系统各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 9.  Phase diagrams of various planes in integer order systems: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    图 10  分数阶系统分岔图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V)

    Figure 10.  Bifurcation diagram of fractional order system, where red (+) and green (–) represent system initial values of (±0.45 V, 0 V, 0 V, 0 V).

    图 11  不同偏置电压Em下, 分数阶系统由周期到混沌相图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V)(a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.4 V; (f) 0.6 V

    Figure 11.  Phase diagram of fractional order systems from Period to chaos at different bias voltage Em, where red (+) and green (–) represent initial values of (±0.45 V, 0 V, 0 V, 0 V) for the system: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.4 V; (f) 0.6 V.

    图 12  分数阶系统各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 12.  Phase diagrams of fractional order systems in various planes: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    图 13  系统随阶次变化分岔图 (a) 系统初值为(0.45 V, 0 V, 0 V, 0 V); (b) 系统初值为(–0.45 V, 0 V, 0 V, 0 V)

    Figure 13.  Bifurcation diagram of system with order variation: (a) Initial value of the system is (0.45 V, 0 V, 0 V, 0 V); (b) initial value of the system is (–0.45 V, 0 V, 0 V, 0 V).

    图 14  含有偏置电压源的分数阶系统吸引盆

    Figure 14.  Fractional order system suction basin with bias voltage source.

    图 15  整数阶系统电路仿真原理图

    Figure 15.  Schematic diagram of integer order system circuit simulation.

    图 16  不同偏置电压Em下, 整数阶系统电路仿真由周期到混沌相图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V) (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V

    Figure 16.  Circuit simulation of integer order system from period to chaos phase diagram at different bias voltage Em, where red (+) and green (–) represent initial values of (±0.45 V, 0 V, 0 V, 0 V) for the system: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V.

    图 17  整数阶系统电路仿真各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 17.  Fractional order system circuit simulation phase diagrams of each plane: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    图 18  分数阶电容等效电路

    Figure 18.  Fractional order capacitor equivalent circuit.

    图 19  分数阶系统电路仿真原理图

    Figure 19.  Schematic diagram of fractional order system circuit simulation.

    图 20  不同偏置电压Em下, 分数阶系统由周期到混沌电路仿真相图, 其中红色(+)和绿色(–)分别为系统初值取(±0.45 V, 0 V, 0 V, 0 V) (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.4 V; (f) 0.6 V

    Figure 20.  Simulation phase diagram of fractional order system from period to chaos circuit at different bias voltage Em, where red (+) and green (–) represent initial values of (±0.45 V, 0 V, 0 V, 0 V) for the system: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.4 V; (f) 0.6 V.

    图 21  分数阶系统电路仿真各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 21.  Fractional order system circuit simulation phase diagrams of each plane: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    图 22  混沌系统实验原理图及实验平台

    Figure 22.  Schematic diagram and experimental platform of integer order system experiment.

    图 23  不同偏置电压Em下, 整数阶实验由周期进入混沌相图, 其中粉色(+)与蓝色(–)分别代表系统初值为(±0.45 V, 0 V, 0 V, 0 V) (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V

    Figure 23.  Integer order experiment from period to chaotic phase diagram at different bias voltage Em, where pink (+) and blue (–) represent system initial values of (±0.45 V, 0 V, 0 V, 0 V), respectively: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V.

    图 24  整数阶实验各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 24.  Phase diagrams of various planes in integer order experiments: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    图 25  不同偏置电压Em下, 分数阶实验由周期进入混沌相图, 其中粉色(+)与蓝色(–)分别代表系统初值为(±0.45 V, 0 V, 0 V, 0 V) (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V

    Figure 25.  Integer order experiment from period to chaotic phase diagram at different bias voltage Em, where pink (+) and blue (–) represent system initial values of (±0.45 V, 0 V, 0 V, 0 V), respectively: (a) 0 V; (b) 0.2 V; (c) 0.3 V; (d) 0.32 V; (e) 0.35 V; (f) 0.6 V.

    图 26  分数阶实验各平面相图 (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3

    Figure 26.  Fractional order experiment phase diagrams of each plane: (a) v1-v2; (b) v1-v3; (c) v1-v4; (d) v2-v3.

    表 1  系统平衡点及其稳定性

    Table 1.  System equilibrium point and its stability.

    d 平衡点 特征值λ1λ4 稳定性
    0, 0.1, 0.3 P0(0, 0, 0, 0) 0.3773, –0.6886 ±5.2293i, –0.0172 指数–1 USF
    0, 0.1, 0.3 P(–19.7558, 0, 0, 1.9755) 1.2573 ±5.8895i, –3.5516, –0.0143 指数–2 USF
    0 P+(19.7558, 0, 0, 1.9755) 1.2573 ±5.8895i, –3.5516, –0.0143 指数–2 USF
    0.1 P+(19.9495, 0, 0, 1.9949) 1.2689 ±5.8991i, –3.5751, –0.0143 指数–2 USF
    0.3 P+(20.3363, 0, 0, 2.0336) 1.2918 ±5.9182i, –3.6215, –0.0143 指数–2 USF
    DownLoad: CSV

    表 2  分数阶电容$C_{\text{m}}^{{q_1}}$和$C_{2}^{{q_2}}$的等效电阻参数

    Table 2.  Equivalent resistance parameters of fractional capacitor $C_{\text{m}}^{{q_1}}$ and $C_{2}^{{q_2}}$.

    RinRo1Ro2/(103 Ω)Ro3/(105 Ω)Ro4/(109 Ω)Ro5/(105 Ω)
    $C_{\text{m}}^{{q_1}} = 5.8 \times {10^3}{\text{ nF}}$0.22735.3271.2032.7051.1581.209
    $C_{2}^{{q_2}} = 10{\text{ nF}}$114.81461348.7828.9730.0837.3
    DownLoad: CSV

    表 3  分数阶电容$C_{\text{m}}^{{q_1}}$和$C_{2}^{{q_2}}$的等效电容参数

    Table 3.  Equivalent capacitance parameters of fractional capacitance $C_{\text{m}}^{{q_1}}$ and $C_{2}^{{q_2}}$.

    Co1/(10–7 F)Co2/(10–7 F)Co3/(10–7 F)Co4/(10–8 F)Co1/(10–5 F)
    $C_{\text{m}}^{{q_1}} = 5.8 \times {10^3}{\text{ nF}}$446.2496.3554.3647.86200
    $C_{2}^{{q_2}} = 10{\text{ nF}}$1.6721.7601.8601.0579.214
    DownLoad: CSV
    Baidu
  • [1]

    Chua L O 1971 IEEE Trans. Circuit. Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Wen S P, Wei H Q, Yan Z, Guo Z Y, Yang, Y, Huang T W, Chen Y R 2019 IEEE Trans. Netw. Sci. Eng. 7 1431Google Scholar

    [4]

    Liu S J, Wang Y Z, Fardad M, Varshney P K 2018 IEEE Circ. Syst. Mag. 18 29Google Scholar

    [5]

    Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J, Qian H 2020 Nature 577 641Google Scholar

    [6]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [7]

    郑广超, 刘崇新, 王琰 2018 67 050502Google Scholar

    Zheng G C, Liu C X, Wang Y 2018 Acta Phys. Sin. 67 050502Google Scholar

    [8]

    Li C B, Wang R, Ma X, Jiang Y C, Liu Z H 2021 Chin. Phys. B 30 201Google Scholar

    [9]

    秦铭宏, 赖强, 吴永红 2022 71 160502Google Scholar

    Qing M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [10]

    Chen M, Ren X, Wu H G, Xu Q, Bao B C 2019 Front. Inform. Tech. El. 20 1706Google Scholar

    [11]

    Wu H G, Ye Y, Chen M, Xu Q, Bao B C 2019 IEEE Access 7 145022Google Scholar

    [12]

    Wang N, Zhang G S, Kuznetsov N V, Bao H 2021 Commun. Nonlinear Sci. Numer. Simul. 92 105494Google Scholar

    [13]

    Wu H G, Bao B C, Liu Z, Xu Q, Jiang P 2016 Nonlinear Dyn. 83 893Google Scholar

    [14]

    俞亚娟, 王在华 2015 64 238401Google Scholar

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401Google Scholar

    [15]

    Ramakrishnan B, Durdu A, Rajagopal K, Akgul A 2020 AEU-Int. J. Electron. Commun. 123 153319Google Scholar

    [16]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126Google Scholar

    [17]

    Hu W P, Wang Z, Zhao Y P, Deng Z C 2020 Appl. Math. Lett. 103 106207Google Scholar

    [18]

    Kengne L K, Kengne J, Telem N A K, Pone J R M 2021 J. Circuit. Syst. Comp. 30 2150077Google Scholar

    [19]

    Kengne J, Mogue R L T, Fozin T F, Telem A N K 2019 Chaos Solitons Fractals 121 63Google Scholar

    [20]

    Cao H, Seoane J M, Sanjuán M A F 2007 Chaos Solitons Fractals 34 197Google Scholar

    [21]

    Kengne L K, Pone J R M, Tagne H T K, Kengne J 2020 AEU-Int. J. Electron. Commun. 118 153146Google Scholar

    [22]

    Wu H, Zhou J, Chen M, Xu Q, Bao B C 2022 Chaos, Solitons Fractals 154 111624Google Scholar

    [23]

    Yang N N, Xu C, Wu C J, Jia R, Liu C X 2018 Nonlinear Dyn. 97 33Google Scholar

  • [1] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [3] Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting. Research on a six-order chaotic circuit with three memristors. Acta Physica Sinica, 2017, 66(4): 040502. doi: 10.7498/aps.66.040502
    [4] Ruan Jing-Ya, Sun Ke-Hui, Mou Jun. Memristor-based Lorenz hyper-chaotic system and its circuit implementation. Acta Physica Sinica, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [5] Yu Ya-Juan, Wang Zai-Hua. A fractional-order memristor model and the fingerprint of the simple series circuits including a fractional-order memristor. Acta Physica Sinica, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [6] He Shao-Bo, Sun Ke-Hui, Wang Hui-Hai. Solution of the fractional-order chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Physica Sinica, 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [7] Yang Fang-Yan, Leng Jia-Li, Li Qing-Du. The 4-dimensional hyperchaotic memristive circuit based on Chua’s circuit. Acta Physica Sinica, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [8] Li Zhi-Jun, Zeng Yi-Cheng, Li Zhi-Bin. Memristive chaotic circuit based on modified SC-CNNs. Acta Physica Sinica, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [9] Hong Qing-Hui, Li Zhi-Jun, Zeng Jin-Fang, Zeng Yi-Cheng. Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta Physica Sinica, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [10] Liang Yan, Yu Dong-Sheng, Chen Hao. A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [11] Hong Qing-Hui, Zeng Yi-Cheng, Li Zhi-Jun. Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor. Acta Physica Sinica, 2013, 62(23): 230502. doi: 10.7498/aps.62.230502
    [12] Xu Bi-Rong. A simplest parallel chaotic system of memristor. Acta Physica Sinica, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [13] Zhou Xiao-Yong. A chaotic system with invariable Lyapunov exponent and its circuit simulation. Acta Physica Sinica, 2011, 60(10): 100503. doi: 10.7498/aps.60.100503
    [14] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
    [15] Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Physica Sinica, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [16] Min Fu-Hong, Yu Yang, Ge Cao-Jun. Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system. Acta Physica Sinica, 2009, 58(3): 1456-1461. doi: 10.7498/aps.58.1456
    [17] Liu Yang-Zheng, Jiang Chang-Sheng, Li Xin-Chao, Sun Han. Circuit experimentation for a complicated hyperchaotic Lü system. Acta Physica Sinica, 2008, 57(11): 6808-6814. doi: 10.7498/aps.57.6808
    [18] Yu Si-Min, Yu Zhi-Ding. A novel fifth-order hyperchaotic circuit and its research. Acta Physica Sinica, 2008, 57(11): 6859-6867. doi: 10.7498/aps.57.6859
    [19] Chen Xiang-Rong, Liu Chong-Xin, Wang Fa-Qiang, Li Yong-Xun. Study on the fractional-order Liu chaotic system with circuit experiment and its control. Acta Physica Sinica, 2008, 57(3): 1416-1422. doi: 10.7498/aps.57.1416
    [20] Chen Ju-Fang, Cheng Li, Liu Ying, Peng Jian-Hua. A circuit experiment for controlling a discrete chaotic system with time-delayed variable feedback. Acta Physica Sinica, 2003, 52(1): 18-24. doi: 10.7498/aps.52.18
Metrics
  • Abstract views:  2429
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2023
  • Accepted Date:  12 September 2023
  • Available Online:  09 October 2023
  • Published Online:  05 January 2024

/

返回文章
返回
Baidu
map