搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁磁/重金属双层薄膜结构中磁性状态的稳定性分析

王日兴 贺鹏斌 肖运昌 李建英

引用本文:
Citation:

铁磁/重金属双层薄膜结构中磁性状态的稳定性分析

王日兴, 贺鹏斌, 肖运昌, 李建英

Stability of magnetization states in a ferromagnet/heavy metal bilayer structure

Wang Ri-Xing, He Peng-Bin, Xiao Yun-Chang, Li Jian-Ying
PDF
导出引用
  • 本文在理论上研究了铁磁/重金属双层薄膜结构中自旋霍尔效应自旋矩驱动的磁动力学. 通过线性稳定性分析, 获得了以电流和磁场为控制参数的磁性状态相图. 发现通过调节电流密度和外磁场, 可以获得不同的磁性状态, 例如: 平面内的进动态、平面内的稳定态以及双稳态. 当外磁场的方向在一定的范围时, 通过调节电流密度可以实现磁矩的翻转和进动. 同时, 通过数值求解微分方程, 给出了这些磁性状态磁矩的演化轨迹.
    The influence of spin Hall effect on magnetization dynamics is one of the hottest topics in spintronics. In this paper, the magnetization dynamics driven by the spin Hall effect-induced torque in a ferromagnet /heavy metal bilayer structure has been investigated theoretically. By linearizing the Landau-Lifshitz-Gilbert equation which includes the spin Hall effect torque term, and taking stability analysis, the phase diagrams in the plane defined by the current density and external magnetic field have been obtained. Under the control of the current density and external magnetic field, several magnetic states, such as in-plane stable state, in-plane precession and bistable states can be realized. With the external magnetic field oriented within a certain range, the magnetization reversal and precession can be realized through adjusting the current density. In addition, the dynamic evolutions of these magnetic states are demonstrated by solving the temporal evolutive equations numerically.
    • 基金项目: 国家自然科学基金(批准号:11347132),湖南省教育厅一般项目(批准号:14C0807)和湖南文理学院校级科研项目(批准号:14YB02)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347132), the Research Foundation of Education Bureau of Hunan Province, China (Grant No.14C0807), and the Field Grade Scientific Research of Hunan University of Arts and Science, China (Grant No. 14YB02).
    [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [9]

    Bazaliy Ya B, B. A. Jones, Zhang S C 1998 Phys. Rev. B 57 R3213

    [10]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [11]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459

    [12]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [13]

    Zhang S F 2000 Phys. Rev. Lett. 85 393

    [14]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [15]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602

    [16]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404

    [17]

    Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410

    [18]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602

    [19]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [20]

    Bazaliy Ya B, Jones B. A., Zhang S C 2004 Phys. Rev. B 69 094421

    [21]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Gall H Le, Fert A 2003 Phys. Rev. B 67 174402

    [22]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [23]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [24]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [25]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028

    [26]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [27]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 039905

    [28]

    Wang R X, Zhao J L, He P B, Gu G N, Li Z D, Pan A L, Liu Q H 2013 J. Magn. Magn. Mater. 327 132

    [29]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1]

    Berger L 1996 Phys. Rev. B 54 9353

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [3]

    Myers E B, Ralph D C, Katine J A, Louie R N, Buhrman R A 1999 Science 285 867

    [4]

    Katine J A, Albert F J, Buhrman R A, Myers E B, Ralph D C 2000 Phys. Rev. Lett. 84 3149

    [5]

    Zhang L, Ren M, Hu J N, Deng N, Chen P Y 2008 Acta Phys. Sin. 57 2427 (in Chinese) [张磊, 任敏, 胡九宁, 邓宁, 陈陪毅 2008 57 2427]

    [6]

    Bao J, Xu X G, Jiang Y 2009 Acta Phys. Sin. 58 7998 (in Chinese) [包瑾, 徐晓光, 姜勇 2009 58 7998]

    [7]

    Sun C Y, Wang Z C 2010 Chin. Phys. Lett. 27 077501

    [8]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [9]

    Bazaliy Ya B, B. A. Jones, Zhang S C 1998 Phys. Rev. B 57 R3213

    [10]

    Zhang S, Li Z 2004 Phys. Rev. Lett. 93 127204

    [11]

    Dyakonov M I, Perel V I 1971 Phys. Lett. 35 459

    [12]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834

    [13]

    Zhang S F 2000 Phys. Rev. Lett. 85 393

    [14]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [15]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602

    [16]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404

    [17]

    Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410

    [18]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602

    [19]

    Liu B Z, Peng J H 2005 Nonlinear Dynamics (Beijing: High Education Publishing) p34 (in Chinese) [刘秉正, 彭建华 2005 非线性动力学 (北京:高等教育出版社) 第34页]

    [20]

    Bazaliy Ya B, Jones B. A., Zhang S C 2004 Phys. Rev. B 69 094421

    [21]

    Grollier J, Cros V, Jaffrès H, Hamzic A, George J M, Faini G, Youssef J. Ben, Gall H Le, Fert A 2003 Phys. Rev. B 67 174402

    [22]

    Smith N, Katine J A, Childress J R, Carey M J 2005 IEEE Trans. Magn. 41 2935

    [23]

    Morise H, Nakamura S 2005 Phys. Rev. B 71 014439

    [24]

    Ebels U, Houssameddine D, Firastrau I, Gusakova D, Thirion C, Dieny B, Buda-Prejbeanu L D 2008 Phys. Rev. B 78 024436

    [25]

    Zhou Y, Bonetti S, Zha C L, Åkerman J 2009 New J. Phys. 11 103028

    [26]

    He P B, Wang R X, Li Z D, Liu Q H, Pan A L, Wang Y G, Zou B S 2010 Eur. Phys. J. B 73 417

    [27]

    Wang R X, He P B, Li Z D, Pan A L, Liu Q H 2011 J. Appl. Phys. 109 039905

    [28]

    Wang R X, Zhao J L, He P B, Gu G N, Li Z D, Pan A L, Liu Q H 2013 J. Magn. Magn. Mater. 327 132

    [29]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

  • [1] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转.  , 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] 赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明. SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控.  , 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [3] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性.  , 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [4] 李再东, 南雪萌, 屈川, 刘伍明. 飞秒尺度下的惯性磁化强度动力学.  , 2023, 72(10): 107502. doi: 10.7498/aps.72.20230345
    [5] 胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫. 共焦腔稳定性突变的分析.  , 2020, 69(22): 224202. doi: 10.7498/aps.69.20200814
    [6] 吕腾博, 张沛, 武瑞涛, 王小力. 弯曲时空中转动对自旋流的影响.  , 2019, 68(12): 120401. doi: 10.7498/aps.68.20182260
    [7] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析.  , 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [8] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估.  , 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [9] 韩秀峰, 万蔡华. 一种数据非易失性、多功能和可编程的自旋逻辑研究进展.  , 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [10] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [11] 王孜博, 江华, 谢心澄. 多端口石墨烯系统中的非局域电阻.  , 2017, 66(21): 217201. doi: 10.7498/aps.66.217201
    [12] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动.  , 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [13] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响.  , 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [14] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究.  , 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [15] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析.  , 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [16] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析.  , 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [17] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步.  , 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [18] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析.  , 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析.  , 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
    [20] 易林, 姚凯伦. 三维量子自旋玻璃理论(Ⅱ)——稳定性分析.  , 1993, 42(6): 992-998. doi: 10.7498/aps.42.992
计量
  • 文章访问数:  6306
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-07-05

/

返回文章
返回
Baidu
map