-
In a multi-optical parametric oscillator by pulse pumping, energy conversion process for 1.57 μm and 3.84 μm parametric light can be expressed by time-dependent wave equations. The split-step integration method is used to solve the equations. By analyzing the simulation results of the output waveform for the multi-optical parametric amplifier, it is confirmed that back conversion and mode competition are the important factors affecting the multi-optical parametric oscillation. The 1.57 μm and 3.84 μm parametric light in an external cavity multi-optical parametric oscillator are simulated under different output mirror transmittances, crystal working lengths and cavity lengths. The conversion efficiency of 1.57 μm and 3.84 μm increase with the output mirror transmittance increasing, which means that the conversion efficiency can be adjusted by changing the parametric light transmittance of the output mirror. There exist an optimal crystal working length and a cavity length in the external cavity multi-optical parametric oscillator. The experiment on external cavity multi-optical parametric oscillator is carried out. The conversion efficiency of 1.57 μm and 3.84 μm parametric light are consistent with the theoretical values. The energy conversion process in the multi-optical parametric oscillator can be simulated by this method, which could be used for optimizing the multi-optical parametric oscillator and increasing the parametric conversion efficiency.
-
Keywords:
- multi-optical parametric oscillator /
- split-step integration methods /
- energy conversion /
- MgO:APLN
[1] Huang H T, He J L, Liu S D, Liu F Q, Yang X Q, Yang H W, Yang Y, Yang H 2011 Laser Phys. Lett. 8 358Google Scholar
[2] Zhang T L, Yao J Q, Zhu X Y, Zhang B G, Li E B, Zhao P, Li H F, Ji F, Wang P 2007 Opt. Commun. 272 111Google Scholar
[3] Breunig I, Sowade R, Buse K 2007 Opt. Lett. 32 1450Google Scholar
[4] Wang P, Shang Y P, Li X, Shen M L, Xu X J 2017 IEEE Photon. J. 9 1500107
[5] 常建华, 杨镇博, 陆洲, 董时超 2013 中国激光 40 1002009
Chang J H, Yang Z B, Lu Z, Dong S C 2013 Chin. J. Lasers 40 1002009
[6] Wei X, Peng Y, Wang W, Chen X, Li D 2011 Appl. Phys. B 104 597Google Scholar
[7] Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar
[8] Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar
[9] Jin Y W, Cristescu S M, Harren F J M, Mandon J 2014 Opt. Lett. 39 3270Google Scholar
[10] Klingbeil A E, Jeffries J B, Davidson D F, Hanson R K 2008 Appl. Phys. B 93 627
[11] Smith A V, Gehr R J, Bowers M S 1999 J. Opt. Soc. Am. B 16 609Google Scholar
[12] Kong Y, Xu Z, Zhou Y, Deng D, Zhu X, Wu L 1998 IEEE J. Quantum Elect. 34 439Google Scholar
[13] Boller K J, Schroder T 1993 J. Opt. Soc. Am. B 10 1778Google Scholar
[14] Schroder T, Boller K J, Fix A, Wallenstein R 1994 Appl. Phys. B 58 425Google Scholar
[15] Fix A, Wallenstein R 1996 J. Opt. Soc. Am. B 13 2484Google Scholar
[16] Arisholm G 1999 J. Opt. Soc. Am. B 16 117Google Scholar
[17] Yu Y J, Chen X Y, Cheng L B, Li S T, Wu C T, Dong Y, Fu Y G, Jin G Y 2017 IEEE Photon. J. 9 1500908
[18] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 224215Google Scholar
Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar
[19] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 044203Google Scholar
Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203Google Scholar
[20] Yu Y J, Chen X Y, Cheng L B, Dong Y, Wu C T, Li S T, Fu Y G, Jin G Y 2017 Opt. Laser Technol. 97 187Google Scholar
-
图 4 不同输出透过率下外腔MOPO输出波形 (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%); (c) M4-3 (1.47 μm@T = 40%); (d) M4-4 (1.47 μm@T = 20%)
Figure 4. Output waveform simulation of external cavity MOPO with different output transmittance: (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%); (c) M4-3 (1.47 μm@T = 40%); (d) M4-4 (1.47 μm@T = 20%).
表 1 腔镜膜系参数
Table 1. Cavity mirror parameters.
腔镜 膜系 腔镜M3 1064 nm@HT, 1.47 μm/
1.57 μm/3.3 μm/
3.84 μm@HR腔镜M4
(1064 nm/3.3 μm
@HR, 1.57 μm@T=40%,
3.84 μm@HT)1) 1.47 μm@T = 80%; 2) 1.47 μm@T = 60%; 3) 1.47 μm@T = 40%; 4) 1.47 μm@T = 20% -
[1] Huang H T, He J L, Liu S D, Liu F Q, Yang X Q, Yang H W, Yang Y, Yang H 2011 Laser Phys. Lett. 8 358Google Scholar
[2] Zhang T L, Yao J Q, Zhu X Y, Zhang B G, Li E B, Zhao P, Li H F, Ji F, Wang P 2007 Opt. Commun. 272 111Google Scholar
[3] Breunig I, Sowade R, Buse K 2007 Opt. Lett. 32 1450Google Scholar
[4] Wang P, Shang Y P, Li X, Shen M L, Xu X J 2017 IEEE Photon. J. 9 1500107
[5] 常建华, 杨镇博, 陆洲, 董时超 2013 中国激光 40 1002009
Chang J H, Yang Z B, Lu Z, Dong S C 2013 Chin. J. Lasers 40 1002009
[6] Wei X, Peng Y, Wang W, Chen X, Li D 2011 Appl. Phys. B 104 597Google Scholar
[7] Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar
[8] Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar
[9] Jin Y W, Cristescu S M, Harren F J M, Mandon J 2014 Opt. Lett. 39 3270Google Scholar
[10] Klingbeil A E, Jeffries J B, Davidson D F, Hanson R K 2008 Appl. Phys. B 93 627
[11] Smith A V, Gehr R J, Bowers M S 1999 J. Opt. Soc. Am. B 16 609Google Scholar
[12] Kong Y, Xu Z, Zhou Y, Deng D, Zhu X, Wu L 1998 IEEE J. Quantum Elect. 34 439Google Scholar
[13] Boller K J, Schroder T 1993 J. Opt. Soc. Am. B 10 1778Google Scholar
[14] Schroder T, Boller K J, Fix A, Wallenstein R 1994 Appl. Phys. B 58 425Google Scholar
[15] Fix A, Wallenstein R 1996 J. Opt. Soc. Am. B 13 2484Google Scholar
[16] Arisholm G 1999 J. Opt. Soc. Am. B 16 117Google Scholar
[17] Yu Y J, Chen X Y, Cheng L B, Li S T, Wu C T, Dong Y, Fu Y G, Jin G Y 2017 IEEE Photon. J. 9 1500908
[18] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 224215Google Scholar
Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar
[19] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 64 044203Google Scholar
Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203Google Scholar
[20] Yu Y J, Chen X Y, Cheng L B, Dong Y, Wu C T, Li S T, Fu Y G, Jin G Y 2017 Opt. Laser Technol. 97 187Google Scholar
Catalog
Metrics
- Abstract views: 7110
- PDF Downloads: 45
- Cited By: 0