-
Ultraviolet laser operating at 355 nm has been found to have wide applications in scientific and industrial fields of laser radar, biological fluorescence medicine, micro processing, laser marking and laser ablation, owing to its superior properties of short wavelength, high single-photon energy, and high resolution. In addition, 355 nm laser plays a vital role in promoting the development of RGB full color display because it can be used as an excitation source for investigating the blue light emitting materials. LiB3O5 (LBO) crystal possesses relatively high nonlinear coefficient and high optical damage threshold. Therefore, it is generally employed to generate 355 nm light through the third harmonic generation (THG) of the Nd:YAG laser (1064 nm). However, the CsB3O5(CBO) crystal, which also belongs to B3O7 group has attracted more attention for its larger nonlinear coefficient. The temperature sensitivity is another important characteristic of the nonlinear crystal. Temperature fluctuation can cause the variation of refractive index of nonlinear optical crystal, which leads to phase mismatch and thus affects the nonlinear conversion efficiency. The principal refractive index of CBO crystal was accurately measured using the auto-collimation method in a temperature range from 40 to 190 ℃ for the first time by Zhang et al. in 2013 [Zhang G C, et al. 2013 Opt. Lett. 38 1594], while the temperature bandwidth of CBO for 355 nm THG has not been reported. In the present paper, a high-power 355 nm laser is produced by efficient THG of an acousto-optic Q-switched quasicontinuous wave 1064 nm laser in CBO crystal. The master-oscillation power-amplification (MOPA) system with Nd:YAG crystal which is side pumped by high-power pulsed laser diode (LD) array delivers 210 W of a quasi-continuous Q-switched 1064 nm laser power. The laser operates at a 1 kHz repetition rate, and each pulse train contains five Q-switched pulses each with a duration of 40 ns. The 98 W of 532 nm green light is produced by second-harmonic generated in type-I LBO crystal. The 28.3 W ultraviolet laser is achieved by a 30-mm type-II CBO crystal through the sum frequency of 1064 nm and 532 nm light. The conversion efficiency from the fundamental light to the third harmonic reaches 13.5%, which is 28.6% higher than that obtained with a type-II LBO crystal under the same experimental conditions. The temperature sensitivity of CBO crystal in the 355 nm THG process is studied. Its temperature bandwidth is 25, which is much broader than that of LBO crystal. The experimental results show that the CBO crystal is superior to LBO crystal in the sense of conversion efficiency and temperature sensitivity for THG of 355 nm.
-
Keywords:
- 355 nm laser /
- CsB3O5 crystal /
- third-harmonic generation /
- temperature bandwidth
[1] Jing M, Hua D X, Le J 2016 Acta Phys. Sin. 65 070704 (in Chinese) [景敏, 华灯鑫, 乐静 2016 65 070704]
[2] Drakaki E, Dessinioti C, Stratigos A J, Salavastru C, Antoniou C 2014 J. Biomed. Opt. 19 030901
[3] Itoh S, Sakakura M, Shimotsuma Y, Miura K 2015 Appl. Phys. B 119 519
[4] Zhang F, Duan J, Zeng X Y, Li X Y 2010 Infrared and Laser Engineering 39 143 (in Chinese) [张菲, 段军, 曾晓雁, 李祥友 2010 红外与激光工程 39 143]
[5] Ryoo K, Kim M, Sung J, Kim K, Kang M 2015 J. Mech. Sci. Technol. 29 365
[6] Bao L D, Han J H, Duan T, Sun N C, Gao X, Feng G Y, Yang L M, Niu R H, Liu Q X 2012 Acta Phys. Sin. 61 197901 (in Chinese) [包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜 2012 61 197901]
[7] Shi L F, Chen Q, Yang P, Li B, Wang Y X, Zhang L J, Ye Y Y 2014 Chinese Journal of Luminescence 35 926 (in Chinese) [史林芳, 陈倩, 杨平, 李兵, 王雨香, 张丽君, 叶媛媛 2014 发光学报 35 926]
[8] Zhao S L, Hou Y B, Xu Z 2006 Chinese Journal of Luminescence 27 191 (in Chinese) [赵谡玲, 侯延冰, 徐征 2006 发光学报 27 191]
[9] Gapontsev V P, Tyrtyshnyy V A, Vershinin O I, Davydov B L, Oulianov D A 2013 Opt. Express 21 3715
[10] Cole B, Hays A, Mcintosh C, Goldberg L 2013 Proc. SPIE 8599 85991L
[11] Liu H, Gong M L 2009 Acta Phys. Sin. 58 7000 (in Chinese) [刘欢, 巩马理 2009 58 7000]
[12] Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840
[13] Kitano H, Matsui T, Sato K, Ushiyama N, Yoshimura M, Mori Y, Sasaki T 2003 Opt. Lett. 28 263
[14] Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197
[15] Wu Y C, Chang F, Fu P Z, Chen C T, Wang G L, Geng A C, Bo Y, Cui D F, Xu Z Y 2005 Chin. Phys. Lett. 22 1426
[16] Zhang G C, Liu S S, Huang L X, Zhang G, Wu Y C 2013 Opt. Lett. 38 1594
[17] Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208
[18] Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]
-
[1] Jing M, Hua D X, Le J 2016 Acta Phys. Sin. 65 070704 (in Chinese) [景敏, 华灯鑫, 乐静 2016 65 070704]
[2] Drakaki E, Dessinioti C, Stratigos A J, Salavastru C, Antoniou C 2014 J. Biomed. Opt. 19 030901
[3] Itoh S, Sakakura M, Shimotsuma Y, Miura K 2015 Appl. Phys. B 119 519
[4] Zhang F, Duan J, Zeng X Y, Li X Y 2010 Infrared and Laser Engineering 39 143 (in Chinese) [张菲, 段军, 曾晓雁, 李祥友 2010 红外与激光工程 39 143]
[5] Ryoo K, Kim M, Sung J, Kim K, Kang M 2015 J. Mech. Sci. Technol. 29 365
[6] Bao L D, Han J H, Duan T, Sun N C, Gao X, Feng G Y, Yang L M, Niu R H, Liu Q X 2012 Acta Phys. Sin. 61 197901 (in Chinese) [包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜 2012 61 197901]
[7] Shi L F, Chen Q, Yang P, Li B, Wang Y X, Zhang L J, Ye Y Y 2014 Chinese Journal of Luminescence 35 926 (in Chinese) [史林芳, 陈倩, 杨平, 李兵, 王雨香, 张丽君, 叶媛媛 2014 发光学报 35 926]
[8] Zhao S L, Hou Y B, Xu Z 2006 Chinese Journal of Luminescence 27 191 (in Chinese) [赵谡玲, 侯延冰, 徐征 2006 发光学报 27 191]
[9] Gapontsev V P, Tyrtyshnyy V A, Vershinin O I, Davydov B L, Oulianov D A 2013 Opt. Express 21 3715
[10] Cole B, Hays A, Mcintosh C, Goldberg L 2013 Proc. SPIE 8599 85991L
[11] Liu H, Gong M L 2009 Acta Phys. Sin. 58 7000 (in Chinese) [刘欢, 巩马理 2009 58 7000]
[12] Wu Y C, Fu P Z, Wang J X, Xu Z Y, Zhang L, Kong Y F, Chen C T 1997 Opt. Lett. 22 1840
[13] Kitano H, Matsui T, Sato K, Ushiyama N, Yoshimura M, Mori Y, Sasaki T 2003 Opt. Lett. 28 263
[14] Guo L, Wang G L, Zhang H B, Cui D F, Wu Y C, Lu L, Zhang J Y, Huang J Y, Xu Z Y 2007 Appl. Phys. B 88 197
[15] Wu Y C, Chang F, Fu P Z, Chen C T, Wang G L, Geng A C, Bo Y, Cui D F, Xu Z Y 2005 Chin. Phys. Lett. 22 1426
[16] Zhang G C, Liu S S, Huang L X, Zhang G, Wu Y C 2013 Opt. Lett. 38 1594
[17] Wang P Y, Xie S Y, Bo Y, Wang B S, Zuo J W, Wang Z C, Shen Y, Zhang F F, Wei K, Jin K, Xu Y T, Xu J L, Peng Q J, Zhang J Y, Lei W Q, Cui D F, Zhang Y D, Xu Z Y 2014 Chin. Phys. B 23 094208
[18] Wang P Y 2014 Ph. D. Dissertation (Beijing: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) (in Chinese) [王鹏远 2014 博士学位论文(北京: 中科院理化技术研究所)]
Catalog
Metrics
- Abstract views: 7905
- PDF Downloads: 342
- Cited By: 0