搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效外腔倍频产生426 nm激光的实验研究

田龙 王庆伟 姚文秀 李庆回 王雅君 郑耀辉

引用本文:
Citation:

高效外腔倍频产生426 nm激光的实验研究

田龙, 王庆伟, 姚文秀, 李庆回, 王雅君, 郑耀辉

Experimental realization of high-efficiency blue light at 426 nm by external frequency doubling resonator

Tian Long, Wang Qing-Wei, Yao Wen-Xiu, Li Qing-Hui, Wang Ya-Jun, Zheng Yao-Hui
PDF
HTML
导出引用
  • 利用与铯原子吸收线对应的852 nm半导体激光作为基频光, 泵浦基于周期极化磷酸钛氧钾(PPKTP)晶体的环形腔, 进行高效外腔谐振倍频并产生426 nm激光. 在理论分析小角度环形腔内的热透镜效应基础上, 发现晶体中等效热透镜中心位置并非在晶体的几何中心. 在理论分析的基础上, 实验上通过精密平移台精细调节PPKTP晶体在腔内位置, 使得等效热透镜中心位置与谐振腔的腰斑位置重合, 进而减小晶体热透镜效应导致的模式失配对倍频效率的影响. 在泵浦功率为515 mW时产生了428 mW的426 nm激光输出, 对应的倍频转换效率为83.1%. 此高效倍频过程为制备与铯原子吸收线相匹配的非经典光场提供有效泵浦光, 为推动量子非经典光场的应用以及量子信息科学的发展奠定基础.
    Second harmonic generation (SHG) is used to get continuous wave laser with a lot of applications, it is a major way to provide pump power for generating nonclassical states, especially for squeezed states and entanglement states. High-efficiency SHG resonant on atoms lines also provides laser sources for atomic entanglement generation, light-atom interaction and high-speed quantum memory. For the frequency-doubling process at 426 nm, the major challenge of increasing the conversion efficiency is the thermal effect caused by the absorption in crystal. The degradation of mode-match efficiency induced by the severely thermal effect limits the conversion efficiency of the second harmonic generator. Furthermore, the blue light induced infrared absorption (BLIIRA) in the nonlinear crystal intensifies the thermal effect, it makes the conversion efficiency of the frequency-doubling cavity and the stability of the output blue laser worse, and it is more serious at high input power. Based on the theoretical analysis of thermal lens, we find that the thermal lens should not be placed at the center of the crystal, the location of the equivalently thermals lens has a deviation from the center of the crystal. Follow the theoretical analysis of thermal lens, we design a ring cavity with a 10 mm-long periodically poled potassium titanyle phosphate (PPKTP) crystal to reduce the thermal lens effect induced mode-mismatch. The location of nonlinear crystal is adjusted precisely to reduce the mode-mismatch caused by the thermal lens under our theoretical analysis. Finally, we realized a high conversion efficiency blue laser at 426 nm with the conversion efficiency up to 83.1% with an output power of 428 mW after the adjustment of the crystal location, corresponding to our theoretical analysis well. The measured beam quality factors (M2 value) of the generated blue laser are $ M^2(x) = 1.05 $ and $ M^2(y) = 1.02 $, respectively. The measured power stability of Generated Blue laser in 15 mins is 1.25%. The output power of the SHG is strong enough to provide pump power for the generation of the continuous variable squeezed vacuum state at 852 nm and the long-term stability of the output blue laser is also measured to be fine. To the best of our knowledge, the conversion efficiency is the highest-reported one at this wavelength. We believe that such high-performance frequency doubling system is a fundamental building block for quantum information science based non-classical states.
      通信作者: 郑耀辉, yhzheng@sxu.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(11654002, 61575114, 11874250,11804207)
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    [1]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [2]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [3]

    程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 68 124205Google Scholar

    Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar

    [4]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [5]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar

    [7]

    Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar

    [8]

    Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar

    [9]

    Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar

    [10]

    霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134

    [11]

    李莹, 罗玉, 潘庆, 彭堃墀 2006 55 5030Google Scholar

    Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar

    [12]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [13]

    Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13

    [15]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [16]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar

    [17]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [18]

    Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar

    [19]

    Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar

    [20]

    Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar

    [21]

    Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar

    [22]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [23]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar

    [24]

    Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar

    [25]

    Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar

    [26]

    Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar

    [27]

    Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109

    [28]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [29]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [30]

    Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57

    [31]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [32]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [33]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [34]

    Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar

  • 图 1  模式匹配率随着基频光功率变化关系. 实线为将晶体移动位置优化后的模式匹配率随着基频光功率变化关系; 虚线为将晶体放置在腔两个凹面镜中心时考虑热透镜效应后模式匹配率随着基频光功率变化关系

    Fig. 1.  Mode-matching efficiency as function of the input power. Solid line: after the optimization; Dashed line: before the optimization.

    图 2  实验装置示意图

    Fig. 2.  Schematic of experimental setup.

    图 3  倍频转换效率随着基频光功率变化关系图

    Fig. 3.  Normalized blue laser power as function of temperature tuning. The input fundamental power is 180, 280 and 370 mW, respectively.

    图 4  倍频效率随着注入基频光功率变化关系图

    Fig. 4.  Conversion efficiency as a function of input power.

    图 5  实验制备426 nm蓝光光束的M2因子测量结果

    Fig. 5.  The measured beam quality factors (M2 value) of the generated blue laser.

    图 6  扫描倍频腔的透射强度(插图)及倍频腔自由运转10 mins内的透射峰漂移值

    Fig. 6.  Transmission intensity of scanning Fabry-Perot cavity (inset) and drift value of transmission peak within 10 mins.

    图 7  倍频腔输出蓝光的功率稳定性

    Fig. 7.  Measured power stability of blue laser.

    Baidu
  • [1]

    Neergaard-Nielsen J S, Nielsen B M, Hettich C, Molmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604Google Scholar

    [2]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [3]

    程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义 2019 68 124205Google Scholar

    Cheng M Y, Wang Z H, He H J, Wang X Z, Zhu J F, Wei Z Y 2019 Acta Phys. Sin. 68 124205Google Scholar

    [4]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [5]

    Yang W, Shi S, Wang Y, Ma W, Zheng Y, Peng K 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Sun X, Wang Y, Tian L, Shi S, Zheng Y, Peng K 2019 Opt. Lett. 44 1789Google Scholar

    [7]

    Eberle T, Handchen V, Schnabel R 2013 Opt. Expres 21 11546Google Scholar

    [8]

    Ast S, Ast M, Mehmet M, Schnabel R 2016 Opt. Lett. 41 5094Google Scholar

    [9]

    Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T, Pan J W 2008 Phys. Rev. Lett. 101 190501Google Scholar

    [10]

    霍美如, 秦际良, 孙颖榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Su Y R, Cheng J L, Yan Z H, Jia X J 2018 J. Quantum Opt. 24 134

    [11]

    李莹, 罗玉, 潘庆, 彭堃墀 2006 55 5030Google Scholar

    Li Y, Luo Y, Pan Q, Peng K C 2006 Acta Phys. Sin. 55 5030Google Scholar

    [12]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [13]

    Yan Z, Wu L, Jia X, Liu Y, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [14]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio, M B, Serafini A, Wolf M M, Polzik E S 2010 Nat. Phys. 7 13

    [15]

    Yang T S, Zhou Z Q, Hua Y L, Liu X, Li Z F, Li P Y, Ma Y, Liu C, Liang P J, Li X, Xiao Y X, Hu J, Li C F, Guo G C 2018 Nat. Commun. 9 3407Google Scholar

    [16]

    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, Walmsley I A 2010 Nat. Photon. 4 218Google Scholar

    [17]

    Hald J, Sørensen J L, Schori C, Polzik E S 1999 Phys. Rev. Lett. 83 1319Google Scholar

    [18]

    Krauter H, Salart D, Muschik C A, Petersen J M, Shen H, Fernholz T, Polzik E S 2013 Nat. Phys. 9 400Google Scholar

    [19]

    Zhdanov B V, Lu Y, Shaffer M K, Miller W, Wright D, Knize R J 2008 Opt. Express 16 17585Google Scholar

    [20]

    Zhang Y, Liu J, Wu J, Ma R, Wang D, Zhang J 2016 Opt. Express 24 19769Google Scholar

    [21]

    Zuo X J, Yan Z H, Jia X J 2019 Appl. Phys. Express 12 032010Google Scholar

    [22]

    Polzik E S, Kimble H J 1991 Opt. Lett. 16 1400Google Scholar

    [23]

    Villa F, Chiummo A, Giacobino E, Bramati A 2007 J. Opt. Soc. Am. B: Opt. Phys. 24 576Google Scholar

    [24]

    Tian J, Yang C, Xue J, Zhang Y, Li G, Zhang T 2016 J. Opt. 18 055506Google Scholar

    [25]

    Le Targat R, Zondy J J, Lemonde P 2005 Opt. Commun. 247 471Google Scholar

    [26]

    Cui X Y, Shen Q, Yan M C, Zeng C, Yuan T, Zhang W Z, Yao X C, Peng C Z, Jiang X, Chen Y A, Pan J W 2018 Opt. Lett. 43 1666Google Scholar

    [27]

    Ashkin A, Boyd G, Dziedzic J 1966 IEEE J. Quantum Electron. QE 2 109

    [28]

    Boyd G D, Kleinman D A 1968 J. Appl. Phys. 39 3597Google Scholar

    [29]

    Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 Appl. Phys. Lett. 56 1831Google Scholar

    [30]

    Uehara N, Gustafson E K, Fejer M M, Byer R L1997 Proceedings of the SPIE - the Interantional Society for Optical Engineerin(V2989) San Jose, CA, USA, Feb. 12–13, 1997 p57

    [31]

    Yang W H, Wang Y J, Zheng Y H, Lu H D 2015 Opt. Express 23 19624Google Scholar

    [32]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [33]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [34]

    Wang S, Pasiskevicius V, Laurell F, J 2004 J. Appl. Phys. 96 2023Google Scholar

  • [1] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长.  , 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响.  , 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [3] 张彤, 张维光, 蔡亚君, 胡晓鸿, 冯野, 王屹山, 于佳. 基于全保偏光纤结构的主振荡脉冲非线性放大系统.  , 2019, 68(23): 234204. doi: 10.7498/aps.68.20190925
    [4] 孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬. 相干彩虹的形成机制.  , 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [5] 何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义. 腔模可调的高平均功率飞秒激光再生放大器.  , 2016, 65(24): 244201. doi: 10.7498/aps.65.244201
    [6] 张孔, 白建东, 何军, 王军民. 激光线宽对单次通过PPMgO:LN晶体倍频效率的影响.  , 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [7] 陈顺意, 丁攀峰, 蒲继雄. 离轴涡旋光束弱走离条件下的倍频效应.  , 2015, 64(24): 244204. doi: 10.7498/aps.64.244204
    [8] 陈国柱, 沈咏, 刘曲, 邹宏新. 利用椭圆高斯光束产生266nm紫外连续激光.  , 2014, 63(5): 054204. doi: 10.7498/aps.63.054204
    [9] 刘智, 刁文婷, 王杰英, 梁强兵, 杨保东, 何军, 张天才, 王军民. 铯原子气室中相干布居俘获的参数依赖关系研究.  , 2012, 61(23): 233201. doi: 10.7498/aps.61.233201
    [10] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟.  , 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [11] 颜国君, 陈光德, 伍叶龙, 杨建清. 双折射吸收非线性介质薄膜中倍频的产生.  , 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [12] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [13] 赵建明, 汪丽蓉, 赵延霆, 马 杰, 肖连团, 贾锁堂. 外加磁场对简并二能级原子系统相干特性的影响.  , 2005, 54(11): 5093-5097. doi: 10.7498/aps.54.5093
    [14] 陈云琳, 袁建伟, 闫卫国, 周斌斌, 罗勇锋, 郭 娟. 准相位匹配PPLN倍频理论研究与优化设计.  , 2005, 54(5): 2079-2083. doi: 10.7498/aps.54.2079
    [15] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [16] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [17] 王正平, 滕 冰, 杜晨林, 许心光, 傅 琨, 许贵宝, 王继扬, 邵宗书. 低对称性非线性光学晶体BIBO的倍频性质.  , 2003, 52(9): 2176-2184. doi: 10.7498/aps.52.2176
    [18] 徐光, 王韬, 朱鹤元, 钱列加, 范滇元, 李富铭. 级联χ2过程产生高量值高阶非线性相移.  , 2002, 51(10): 2261-2260. doi: 10.7498/aps.51.2261
    [19] 吕铁铮, 王韬, 钱列加, 鲁欣, 魏志义, 张杰. 飞秒激光在BBO晶体中倍频效率的数值计算.  , 2002, 51(6): 1268-1271. doi: 10.7498/aps.51.1268
    [20] 王正平, 邵耀鹏, 许心光, 王继扬, 刘耀岗, 魏景谦, 邵宗书. Nd:Ca4ReO(BO3)3(Re=Gd,Y)晶体最佳激光、最佳倍频及最佳自倍频方向的确定.  , 2002, 51(9): 2029-2033. doi: 10.7498/aps.51.2029
计量
  • 文章访问数:  9358
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-18
  • 修回日期:  2019-11-15
  • 刊出日期:  2020-02-20

/

返回文章
返回
Baidu
map