-
Frequency doubling of second-Stokes in an acousto-optic Q-switched Nd:YVO4 cascaded self-Raman cavity is demonstrated to achieve a narrow pulse-width red laser. A three-stage bonded YVO4/Nd:YVO4/YVO4 crystal is designed by comprehensively considering the improvement of thermal effect, the performance of fundamental frequency laser and Raman conversion, to improve the Raman efficiency and output power. An LBO crystal cut for critical phase matching at room temperature is selected and used as a nonlinear optical crystal for realizing the frequency doubling of second- Stokes wave. Its phase matching angle (θ = 86.0°, φ = 0°) is very close to the non-critical phase matching angle and has a small walk-off angle, which is beneficial to the realizing of the high conversion efficiency of frequency doubling. In the experiment, the beam waist position of the pump light and the repetition frequency of the acousto-optic Q-switcher are optimized. Under an incident pump power of 14.2 W and a repetition frequency of 60 kHz, the highest average output power of 1.63 W and conversion efficiency of 11.5% are obtained for the 657 nm red laser emission. The pulse width of 657 nm red light is 11.5 ns at the maximum output power, which is much narrower than that generated by frequency doubling of ordinary neodymium-doped laser at a waveband of 1.3 μm. The result shows that the frequency doubling of the acousto-optic Q-switched Nd:YVO4 cascaded self-Ramanlaser can take advantage of the pulse-width compression characteristics of Raman process to achieve a narrower pulse-width red light laser output.
-
Keywords:
- self-Raman /
- Nd:YVO4 crystal /
- red laser /
- acousto-optic Q-switch
[1] Duan Y M, Sun Y L, Zhu H Y, Mao TW, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar
[2] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 67 024206Google Scholar
Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar
[3] Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H, Zhang S S 2015 Chin. Phys. Lett. 32 124201Google Scholar
[4] 程梦瑶, 段延敏, 孙瑛璐, 张立, 朱海永 2020 激光与光电子学进展 57 071611
Cheng M Y, Duan Y M, Sun Y L, Zhang L, Zhu H Y 2020 Laser & Optoelectronics Progress 57 071611
[5] Zhang L, Duan Y M, Mao X H, Li Z H, Chen Y X, Zhang Y J, Zhu H Y 2021 Opt. Mater. Express 111815
[6] Fan L, Zhao X D, Zhang Y C, Gu D X, Wan H P, Fan H B, Zhu J 2019 Chin. Phys. B. 28 084210Google Scholar
[7] Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar
[8] Chen Y F 2004 Appl. Phys. B 78 685Google Scholar
[9] Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, XuS, Li B X, Chen Z Q, Zhang G 2012 Opt. Lett. 37 1968Google Scholar
[10] Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807
[11] Xie Z, Duan Y M, Guo J H, Huang X H, Yan L F, Zhu H Y 2017 J. Opt. 19 115501Google Scholar
[12] Huang H T, He J L, Zuo C H, Zhang B T, Dong X L, Zhao S 2008 Opt. Commun. 281 803Google Scholar
[13] Qin W, Du C L, Ruan S C, Wang Y C 2007 Opt. Express. 15 1594Google Scholar
[14] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar
[15] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Huang Y D 2009 Appl. Phys. 42 045108
[16] Zhou H Q, Bi X L, Zhu S Q, Li Z, Yin H, Zhang P X, Zhen Q C, Qi T L 2018 Opt. Quant. Electron. 50 56Google Scholar
[17] Zhang Y X, Wang S, Alberto D L, Yu G L, Yu H H, Zhang H J, Mauro T, Xu X G, Wang J Y 2015 Chin. Phys. Lett. 32 054210Google Scholar
[18] He M M, Chen S, Na Q X, Luo S J, Zhu H Y, Li Y, Xu C W, Fan D Y 2020 Chin. Opt. Lett. 18 011405Google Scholar
[19] Zhang T, Zhou L B, Zou J Y, Bu Y K, Xu B, Xu X D, Xu J 2021 Opt. Laser. Technol. 139 106961Google Scholar
[20] Zhang Y X, Yang Y L, Zhang L H, Lu D Z, Xu M, Hang Y, Yan S S, Yu H H, Zhang H J 2019 Chin. Opt. Lett. 17 071402Google Scholar
[21] Frey R, Martino A D, Pradère F 1983 Opt. Lett. 8 437Google Scholar
[22] Murray J T, Austin W L, Richard C, Powell 1999 Opt. Mater. 11 353Google Scholar
[23] Lee A J, Jipeng L, Pask H M 2010 Opt. Lett. 35 3000Google Scholar
[24] 俞叶, 段延敏, 郭俊宏, 张栋, 陈思梦, 廖小青, 朱海永 2017 中国激光 44 0701007Google Scholar
Yu Y, Duan Y M, Guo J H, Zhang D, Chen S M, Liao X Q, Zhu H Y 2017 Chin. J. Lasers 44 0701007Google Scholar
[25] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 69 124201Google Scholar
SunYL, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar
[26] Guo J, ZhuH Y, ChenS M, DuanY M, XuX R, XuC W, TangD Y 2018 Laser Phys. Lett. 15 075803Google Scholar
[27] Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar
-
-
[1] Duan Y M, Sun Y L, Zhu H Y, Mao TW, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar
[2] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 67 024206Google Scholar
Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar
[3] Liu Y, Liu Z J, Cong Z H, Men S J, Xia J B, Rao H, Zhang S S 2015 Chin. Phys. Lett. 32 124201Google Scholar
[4] 程梦瑶, 段延敏, 孙瑛璐, 张立, 朱海永 2020 激光与光电子学进展 57 071611
Cheng M Y, Duan Y M, Sun Y L, Zhang L, Zhu H Y 2020 Laser & Optoelectronics Progress 57 071611
[5] Zhang L, Duan Y M, Mao X H, Li Z H, Chen Y X, Zhang Y J, Zhu H Y 2021 Opt. Mater. Express 111815
[6] Fan L, Zhao X D, Zhang Y C, Gu D X, Wan H P, Fan H B, Zhu J 2019 Chin. Phys. B. 28 084210Google Scholar
[7] Kaminskii A A, Ueda K, Eichler H J, Kuwano Y, Kouta H, Bagaev S N, Chyba T H, Barnes J C, Gad G M A, Murai T, Lu J 2001 Opt. Commun. 194 201Google Scholar
[8] Chen Y F 2004 Appl. Phys. B 78 685Google Scholar
[9] Chen W D, Wei Y, Huang C H, Wang X L, Shen H Y, Zhai S Y, XuS, Li B X, Chen Z Q, Zhang G 2012 Opt. Lett. 37 1968Google Scholar
[10] Zhu H Y, Guo J H, Ruan X K, Xu C W, Duan Y M, Zhang Y J, Tang D Y 2017 IEEE Photonics J. 9 1500807
[11] Xie Z, Duan Y M, Guo J H, Huang X H, Yan L F, Zhu H Y 2017 J. Opt. 19 115501Google Scholar
[12] Huang H T, He J L, Zuo C H, Zhang B T, Dong X L, Zhao S 2008 Opt. Commun. 281 803Google Scholar
[13] Qin W, Du C L, Ruan S C, Wang Y C 2007 Opt. Express. 15 1594Google Scholar
[14] Li Z Y, Zhang B T, Yang J F, He J L, Huang H T, Zuo C H, Xu J L, Yang X Q, Zhao S 2010 Laser Phys. 20 761Google Scholar
[15] Zhu H Y, Zhang G, Huang C H, Wei Y, Huang L X, Huang Y D 2009 Appl. Phys. 42 045108
[16] Zhou H Q, Bi X L, Zhu S Q, Li Z, Yin H, Zhang P X, Zhen Q C, Qi T L 2018 Opt. Quant. Electron. 50 56Google Scholar
[17] Zhang Y X, Wang S, Alberto D L, Yu G L, Yu H H, Zhang H J, Mauro T, Xu X G, Wang J Y 2015 Chin. Phys. Lett. 32 054210Google Scholar
[18] He M M, Chen S, Na Q X, Luo S J, Zhu H Y, Li Y, Xu C W, Fan D Y 2020 Chin. Opt. Lett. 18 011405Google Scholar
[19] Zhang T, Zhou L B, Zou J Y, Bu Y K, Xu B, Xu X D, Xu J 2021 Opt. Laser. Technol. 139 106961Google Scholar
[20] Zhang Y X, Yang Y L, Zhang L H, Lu D Z, Xu M, Hang Y, Yan S S, Yu H H, Zhang H J 2019 Chin. Opt. Lett. 17 071402Google Scholar
[21] Frey R, Martino A D, Pradère F 1983 Opt. Lett. 8 437Google Scholar
[22] Murray J T, Austin W L, Richard C, Powell 1999 Opt. Mater. 11 353Google Scholar
[23] Lee A J, Jipeng L, Pask H M 2010 Opt. Lett. 35 3000Google Scholar
[24] 俞叶, 段延敏, 郭俊宏, 张栋, 陈思梦, 廖小青, 朱海永 2017 中国激光 44 0701007Google Scholar
Yu Y, Duan Y M, Guo J H, Zhang D, Chen S M, Liao X Q, Zhu H Y 2017 Chin. J. Lasers 44 0701007Google Scholar
[25] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 69 124201Google Scholar
SunYL, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar
[26] Guo J, ZhuH Y, ChenS M, DuanY M, XuX R, XuC W, TangD Y 2018 Laser Phys. Lett. 15 075803Google Scholar
[27] Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Shen H Y, Zheng Y Q, Huang L X, Chen Z Q 2009 Opt. Express 17 21544Google Scholar
Catalog
Metrics
- Abstract views: 5135
- PDF Downloads: 86
- Cited By: 0