-
Environmental uncertainty is one of the limiting factors in the matched-field localization. Within a Bayesian framework, environmental focalization has been widely used to solve the augmented localization problem, in which the environmental parameters, source ranges and depths are considered to be the unknown variables. However, the position of the moving source varies with time, which limits the observation interval and the number of acoustic signals. Therefore, it has to estimate lots of unknown parameters with the limited observation information. When the source moves fast or the environment has great uncertainty, the environmental focalization gets worse. Taking the parameter estimation of Kalman filter in the non-stationary process as a reference, the acoustic signals from a series of observations are treated in a simultaneous inversion. This provides the most informative solution, since data from multiple source locations are brought to bear simultaneously on the environmental unknowns, which in turn constrain the source locations better. In this article, the time-unvarying parameters are introduced to describe the source position. The source positions are inverted indirectly by the time-unvarying parameters, which reduces the estimated parameter dimension effectively. At the same time, the current estimated results are treated as the priori information of the next inversion, which establishes the new prior distribution and cost function. It could compensate for some individual abnormal data effectively and realize continuous localization of the moving source. The noise signals radiated from a surface ship target are processed and analyzed. The Bayesian tracking algorithm greatly increases the observation interval and the number of acoustic signals, and enhances the localization accuracy in an uncertain water environment. Tracking results of the ship noise indicate that simultaneous inversion of multiple acoustic observations with constant velocity track model and the Thikhonov regularization provides a better solution than sequential independent inversions. It is indicated that the Bayesian tracking method learns the uncertain environment as more observations become available. It is discovered that the maximum a posteriori solution and the two-dimensional solution have similar results according to the global positioning system value. The reason is that the source locations are treated implicitly by the source speed, which is similar to the marginal probability distribution by reducing the multidimensional posterior probability density to the representative two-dimensional probability distributions.
-
Keywords:
- uncertain ocean environment /
- matched-field localization /
- Bayesian theory /
- moving source
[1] Bucker H P 1976 J. Acoust. Soc. Am. 59 368
[2] Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 145 (in Chinese) [秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145]
[3] Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 65 014303]
[4] Vaccaro R J, Chhetri A, Harrison B F 2004 J. Acoust. Soc. Am. 115 3010
[5] Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese) [莫亚枭, 朴胜春, 张海刚, 李丽 2014 63 214302]
[6] Fawcett J A, Maranda B H 1994 J. Acoust. Soc. Am. 96 1047
[7] Schmidt H, Baggeroer A B, Kuperman W A, Sheer E K 1990 J. Acoust. Soc. Am. 88 1851
[8] Rihardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[9] Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496 (in Chinese) [杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496]
[10] Seong W, Byun S H 2002 IEEE J.Oceanic Eng. 27 642
[11] Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410
[12] Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808
[13] Dosso S E, Wilmut M J 2007 J. Acoust. Soc. Am. 121 2567
[14] Tantum S L, Nolte L W 1998 J. Acoust. Soc. Am. 103 362
[15] Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82
[16] Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717
[17] Dosso S E, Wilmut M J 2010 J. Acoust. Soc. Am. 128 66
[18] Gerstoft P 1997 SAGA Users Guide 2.0, an Inversion Software Package (La Spezia: SACLANT Undersea Research Center) pp01-132
[19] Li Z L, Yan J, Li F H 2002 Acta Acustica 27 487 (in Chinese) [李整林, 郡锦, 李风华 2002 声学学报 27 487]
[20] Jensen F B, Ferla F C 1979 SNAP: The SACLANTCEN Normal-mode Acoustic Propagation Model (La Spezia: SACLANTCEN) pp1-99
[21] Li Q Q, Li Z L, Zhang R H 2014 Acta Acustica 39 535 (in Chinese) [李倩倩, 李整林, 张仁和 2014 声学学报 39 535]
-
[1] Bucker H P 1976 J. Acoust. Soc. Am. 59 368
[2] Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 145 (in Chinese) [秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145]
[3] Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 65 014303]
[4] Vaccaro R J, Chhetri A, Harrison B F 2004 J. Acoust. Soc. Am. 115 3010
[5] Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese) [莫亚枭, 朴胜春, 张海刚, 李丽 2014 63 214302]
[6] Fawcett J A, Maranda B H 1994 J. Acoust. Soc. Am. 96 1047
[7] Schmidt H, Baggeroer A B, Kuperman W A, Sheer E K 1990 J. Acoust. Soc. Am. 88 1851
[8] Rihardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[9] Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496 (in Chinese) [杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496]
[10] Seong W, Byun S H 2002 IEEE J.Oceanic Eng. 27 642
[11] Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410
[12] Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808
[13] Dosso S E, Wilmut M J 2007 J. Acoust. Soc. Am. 121 2567
[14] Tantum S L, Nolte L W 1998 J. Acoust. Soc. Am. 103 362
[15] Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82
[16] Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717
[17] Dosso S E, Wilmut M J 2010 J. Acoust. Soc. Am. 128 66
[18] Gerstoft P 1997 SAGA Users Guide 2.0, an Inversion Software Package (La Spezia: SACLANT Undersea Research Center) pp01-132
[19] Li Z L, Yan J, Li F H 2002 Acta Acustica 27 487 (in Chinese) [李整林, 郡锦, 李风华 2002 声学学报 27 487]
[20] Jensen F B, Ferla F C 1979 SNAP: The SACLANTCEN Normal-mode Acoustic Propagation Model (La Spezia: SACLANTCEN) pp1-99
[21] Li Q Q, Li Z L, Zhang R H 2014 Acta Acustica 39 535 (in Chinese) [李倩倩, 李整林, 张仁和 2014 声学学报 39 535]
Catalog
Metrics
- Abstract views: 7520
- PDF Downloads: 466
- Cited By: 0