-
Various line array configurations are evaluated for the source localization performance based on the analysis of mode decomposition matrix in this paper. The guideline of array shape design focuses on improving the localization performance of matched filed processing, meanwhile reducing the difficulty of deploying equipment in practical experiments. In the shallow water environment, when the environment is well known, the source localization result can be obtained by matched field processing algorithms effectively, but the source localization performance is affected by the array parameters, such as array length, the number of sensors, and the configurations of various horizontal and vertical line arrays. The modal decomposition method provides a useful insight into the questions of how many modes are needed and how to design the array to resolve the modes. Therefore, the method of utilizing a normal mode acoustic propagation model to decompose mode is proposed by vertical line array, horizontal line array and combined array respectively. Then we can evaluate the source localization performance of various line array configurations by studying the characteristic of normal mode decomposition matrix, thus establishing a qualitative or even quantitative relationship between each other. The more the normal mode decomposition matrix tends to be diagonalized, the better performance of line array localization will be obtained. Simulation results show that the localization performance of matched field processing with the combined arrays will be severely degraded when the mode amplitudes cannot be accurately deduced by one of the sub-arrays. Considering the requirements for the practical experiments and various environments, the source localization performance of short vertical line array and combined array are mainly discussed in this paper. The combined array can increase the azimuth and depth information of the source and realize three-dimensional target detection while the vertical array provides range-depth information and the horizontal array provides bearing information. Simulation result indicates that the design guidelines based on the normal mode decomposition are appropriate for arrays employed for matched filed processing. Meanwhile, the combined arrays perform better than the short vertical array, which is benefited by the horizontal array's suppressing the side lobes, which leads the ratio of peak to sidelobe to increase, and thus improving the location accuracy. The values of localization accuracy of combined arrays are all above 90% according to the simulation experiment. Take the practical application into account, the combined array is undoubtedly a compromise choice for the localization performance and the test complexity.
-
Keywords:
- normal mode decomposition /
- matched field processing /
- multi-array
[1] Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92
[2] Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 66 094302]
[3] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]
[4] Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]
[5] Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301
[6] Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411
[7] Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]
[8] Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301
[9] Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445
[10] Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543
[11] Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434
[12] Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386
[13] Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170
[14] Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735
[15] Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]
[16] Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536
[17] Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645
[18] Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889
[19] Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]
[20] Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122
[21] Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]
[22] Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]
[23] Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]
[24] Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286
[25] Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315
-
[1] Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92
[2] Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 66 094302]
[3] Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]
[4] Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]
[5] Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301
[6] Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411
[7] Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]
[8] Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301
[9] Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445
[10] Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543
[11] Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434
[12] Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386
[13] Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170
[14] Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735
[15] Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]
[16] Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536
[17] Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645
[18] Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889
[19] Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]
[20] Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122
[21] Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]
[22] Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]
[23] Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]
[24] Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286
[25] Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315
Catalog
Metrics
- Abstract views: 6243
- PDF Downloads: 102
- Cited By: 0