Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performance analysis of matched field processing localization with various line array configurations based on normal mode decomposition

Jia Yu-Qing Su Lin Guo Sheng-Ming Ma Li

Citation:

Performance analysis of matched field processing localization with various line array configurations based on normal mode decomposition

Jia Yu-Qing, Su Lin, Guo Sheng-Ming, Ma Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Various line array configurations are evaluated for the source localization performance based on the analysis of mode decomposition matrix in this paper. The guideline of array shape design focuses on improving the localization performance of matched filed processing, meanwhile reducing the difficulty of deploying equipment in practical experiments. In the shallow water environment, when the environment is well known, the source localization result can be obtained by matched field processing algorithms effectively, but the source localization performance is affected by the array parameters, such as array length, the number of sensors, and the configurations of various horizontal and vertical line arrays. The modal decomposition method provides a useful insight into the questions of how many modes are needed and how to design the array to resolve the modes. Therefore, the method of utilizing a normal mode acoustic propagation model to decompose mode is proposed by vertical line array, horizontal line array and combined array respectively. Then we can evaluate the source localization performance of various line array configurations by studying the characteristic of normal mode decomposition matrix, thus establishing a qualitative or even quantitative relationship between each other. The more the normal mode decomposition matrix tends to be diagonalized, the better performance of line array localization will be obtained. Simulation results show that the localization performance of matched field processing with the combined arrays will be severely degraded when the mode amplitudes cannot be accurately deduced by one of the sub-arrays. Considering the requirements for the practical experiments and various environments, the source localization performance of short vertical line array and combined array are mainly discussed in this paper. The combined array can increase the azimuth and depth information of the source and realize three-dimensional target detection while the vertical array provides range-depth information and the horizontal array provides bearing information. Simulation result indicates that the design guidelines based on the normal mode decomposition are appropriate for arrays employed for matched filed processing. Meanwhile, the combined arrays perform better than the short vertical array, which is benefited by the horizontal array's suppressing the side lobes, which leads the ratio of peak to sidelobe to increase, and thus improving the location accuracy. The values of localization accuracy of combined arrays are all above 90% according to the simulation experiment. Take the practical application into account, the combined array is undoubtedly a compromise choice for the localization performance and the test complexity.
      Corresponding author: Su Lin, sulin807@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. Y11704396) and the Institute of Acoustics, Chinese Academy of Sciences for Youth (Grant No. CXJJ-16S057).
    [1]

    Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92

    [2]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 66 094302]

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]

    [5]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [6]

    Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411

    [7]

    Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]

    [8]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [9]

    Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445

    [10]

    Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543

    [11]

    Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434

    [12]

    Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [13]

    Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170

    [14]

    Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735

    [15]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]

    [16]

    Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536

    [17]

    Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645

    [18]

    Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889

    [19]

    Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]

    [20]

    Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122

    [21]

    Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]

    [22]

    Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]

    [23]

    Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]

    [24]

    Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286

    [25]

    Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315

  • [1]

    Gemba K L, Hodgkiss W S, Gerstoft P 2017 J. Acoust. Soc. Am. 141 92

    [2]

    Li X M, Zhang M H, Zhang H G, Piao S C, Liu Y Q, Zhou J B 2017 Acta Phys. Sin. 66 094302 (in Chinese)[李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波 2017 66 094302]

    [3]

    Yao M J, Lu L C, Ma L, Guo S M 2016 Acta Acust. 41 73 (in Chinese)[姚美娟, 鹿力成, 马力, 郭圣明 2016 声学学报 41 73]

    [4]

    Su L, Sun B W, Guo S M, Ma L 2015 Acta Acust. 40 799 (in Chinese)[苏林, 孙炳文, 郭圣明, 马力 2015 声学学报 40 799]

    [5]

    Wang H Z, Wang N, Gao D Z, Gao B 2016 Chin. Phys. Lett. 33 044301

    [6]

    Gemba K L, Nannuru S, Gerstoft P, Hodgkiss W S 2017 J. Acoust. Soc. Am. 141 3411

    [7]

    Yang K D, Ma Y L, Zou S X 2006 Acta Acust. 31 496 (in Chinese)[杨坤德, 马远良, 邹士鑫 2006 声学学报 31 496]

    [8]

    Li Q Q, Li Z L, Zhang R H 2013 Chin. Phys. Lett. 30 024301

    [9]

    Dosso S E, Sotirin B J 1999 J. Acoust. Soc. Am. 106 3445

    [10]

    Worthmann B M, Song H C, Dowling D R 2017 J. Acoust. Soc. Am. 141 543

    [11]

    Conan E, Bonnel J, Chonavel T, Nicolas B 2016 J. Acoust. Soc. Am. 140 EL434

    [12]

    Heaney K D, Campbell C R, Baggeroer A B, D'Spain G L, Worcester P, Dzieciuch M A 2010 J. Acoust. Soc. Am. 128 2386

    [13]

    Booth N O, Schey P W, Hodgkiss W S 1997 J. Acoust. Soc. Am. 102 3170

    [14]

    Kim K, Seong W, Lee K, Kim S, Shimless 2009 J. Acoust. Soc. Am. 125 735

    [15]

    Zhang T W, Yang K D, Ma Y L, Li X G 2010 Acta Phys. Sin. 59 3294 (in Chinese)[张同伟, 杨坤德, 马远良, 黎雪刚 2010 59 3294]

    [16]

    Chapman R, Hudson D 2000 J. Acoust. Soc. Am. 108 2536

    [17]

    Tracey B, Lee N, Zurk L, Ward J 2000 J. Acoust. Soc. Am. 108 2645

    [18]

    Zurk L M, Ward J 2000 J. Acoust. Soc. Am. 107 2889

    [19]

    Peng S, Yuan R, Xu G G 2015 Ship Science and Technology 37 121 (in Chinese)[彭水, 袁蓉, 徐国贵 2015 舰船科学技术 37 121]

    [20]

    Ge H L, Gong X Y, Li R W 2001 China Youth Conference 2001 Acoustic Society[CYCA'01] Shanghai, China, November 3-6, 2001 p122

    [21]

    Liu F X, Pan X, Gong X Y 2013 J. Zhejiang Univ. (Eng. Sci.) 47 62 (in Chinese)[刘凤霞, 潘翔, 宫先仪 2013 浙江大学学报(工学版) 47 62]

    [22]

    Zheng S J 2014 Audio Eng. 38 54 (in Chinese)[郑胜家 2014 电声技术 38 54]

    [23]

    Wang X Z, Tu Y, Wu K T, Wu J R, Cai H Z 2012 Acta Armam. 33 927 (in Chinese)[王学志, 涂英, 吴克桐, 吴金荣, 蔡惠智 2012 兵工学报 33 927]

    [24]

    Bai M R, Lai C S, Wu P C 2017 J. Acoust. Soc. Am. 142 286

    [25]

    Chapman N R, Yeremy M L 1994 J. Acoust. Soc. Am. 2 315

  • [1] Xu Xiao-Hu, Chen Yong-Qiang, Guo Zhi-Wei, Sun Yong, Miao Xiang-Yang. Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials. Acta Physica Sinica, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [2] Fan Hong-Yi, Wu Ze. Statistical properties of binomial and negative-binomial combinational optical field state and its generation in quantum diffusion channel. Acta Physica Sinica, 2015, 64(8): 080303. doi: 10.7498/aps.64.080303
    [3] Zhang Tong-Wei, Yang Kun-De. A virtual time reversal method for passive source localization in a range-dependent waveguide. Acta Physica Sinica, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [4] Meng Zong, Fu Li-Yuan, Song Ming-Hou. Bifurcation of a kind of nonlinear-relative rotational system with combined harmonic excitation. Acta Physica Sinica, 2013, 62(5): 054501. doi: 10.7498/aps.62.054501
    [5] Liu Qing-Lun, Wang Zi-Cheng, Liu Pu-Kun, Dong Fang. Analysis of high frequency characteristics of the double-grating rectangular waveguide slow-wave-structure based on the field match method. Acta Physica Sinica, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [6] Huang Feng, Li Peng-Cheng, Zhou Xiao-Xin. Isolated attosecond pulse generated by a model helium atom exposed to the combined field. Acta Physica Sinica, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [7] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [8] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [9] Zhang Tong-Wei, Yang Kun-De, Ma Yuan-Liang, Li Xue-Gang. The performance of matched-field localization with a horizontal line array at different depths in shallow water. Acta Physica Sinica, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
    [10] Chen Dong, Yu Ben-Hai, Tang Qing-Bin. A broadband supercontinuum generated by helium atom exposed to combined mid-infrared laser field. Acta Physica Sinica, 2010, 59(7): 4564-4570. doi: 10.7498/aps.59.4564
    [11] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [12] Yu Yun, Hui Jun-Ying, Zhao An-Bang, Sun Guo-Cang, Teng Chao. Complex acoustic intensity of normal modes in Pekeris waveguide and its application. Acta Physica Sinica, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [13] Huang Si-Xun, Cai Qi-Fa, Xiang Jie, Zhang Ming. On decomposition of typhoon flow field. Acta Physica Sinica, 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [14] Wang Yong-Long, Li Zi-Ping, Xu Chang-Tan. Fractional spins and fractional statistics of composite Boson field. Acta Physica Sinica, 2006, 55(5): 2149-2151. doi: 10.7498/aps.55.2149
    [15] Gong Zhi-Qiang, Zou Ming-Wei, Gao Xin-Quan, Dong Wen-Jie. On the difference between empirical mode decomposition and wavelet decomposition in the nonlinear time series. Acta Physica Sinica, 2005, 54(8): 3947-3957. doi: 10.7498/aps.54.3947
    [16] Luo Yong, Li Hong-Fu, Xie Zhong-Lian, Yu Sheng, Deng Xue, Zhao Qing, Xu Yong. Field matching analysis of abrupt cavities with absorbing materials. Acta Physica Sinica, 2004, 53(1): 229-234. doi: 10.7498/aps.53.229
    [17] LI YONG-MIN, FAN QIAO-YUN, ZHANG KUAN-SHOU, XIE CHANG-DE, PENG KUN-CHI. QUADRATURE PHASE-SQUEEZING OF PUMP FIELD REFLECTED FROM TRIPLY RESONANT QUASI-PHASE-MATCHED OPTICAL PARAMETRIC OSCILLATOR. Acta Physica Sinica, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [18] HE LIN-SHENG, JIANG HAI-HE. . Acta Physica Sinica, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [19] Zhang Ren-he, Zhu Bai-xian. NORMAL-MODE SOUND FIELD OF DIRECTIONAL RADIATOR. Acta Physica Sinica, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [20] . Acta Physica Sinica, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
Metrics
  • Abstract views:  6243
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2018
  • Accepted Date:  15 May 2018
  • Published Online:  05 September 2018

/

返回文章
返回
Baidu
map