-
Matched field processing techniques have been studied extensively in recent decades, and a lot of detail algorithms have been put forward for practical use. When the underwater target is obscured by the strong surface interferences, the performance of matched field processing localization will degrade severely. The now existing spatial filter technique can be used to suppress the surface interferences, but the burden of calculation is heavy and the memory usage is large. In this paper, a scheme of optimizing spatial filter design based on the compressed replica vectors is presented, and the broadband data are processed incoherently. In contrary to the existing spatial filter, the optimized spatial filter can effectively reduce the computational complexity and memory usage when the number of array elements N is greater than the number of the effective modes Q, meanwhile, it also retains the original performance of interference suppression. Numerical simulations in a littoral shallow water environment are performed to validate the performance of the spatial filter and the promotion of computation speed. Then, data processing results obtained from an experiment conducted in the littoral shallow water environment are presented. It follows from the results that the weak underwater target can be distinguished from the strong surface interference clearly by use of the incoherent matched field processing with the application of the spatial filter based on compressed replica vectors.
-
Keywords:
- matched field processing /
- spatial filter /
- compressed replica vector
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401
[2] Tolstoy A 1993 Matched Field Processing for Underwater Acoustic (Singapore: World Scientific Publishing Co. Pte. Ltd.) pp11-41
[3] Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301
[4] Mirkin A N, Sibul L H 1994 J. Acoust. Soc. Am. 95 877
[5] Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 1909 (in Chinese)[鄢社锋, 马远良 2004 科学通报 49 1909]
[6] Antoniou A, Lu W S 2007 Practical Optimization: Algorithms and Engineering Applications (Berlin: Springer) p408
[7] Lu W S 2007 Use SeDuMi to Solve LP, SDP, and SCOP Problems: Remarks and Examples (Victoria: University of Victoria) p1
[8] Zhang S D, Han L, Han D 2011 Underwater Acoust. Eng. 35 67 (in Chinese) [张书第, 韩磊, 韩东 2011 水声工程 35 67]
[9] Yan S F, Hou C H, Ma X C 2007 Acta Acust. 32 151 (in Chinese) [鄢社锋, 侯朝焕, 马晓川 2007 声学学报 32 151]
[10] Vaccaro R J, Chhetri A, Brian F 2004 J. Acoust. Soc. Am. 115 3010
[11] Boyd S P, Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press) p525
[12] Bucker H P 1976 J. Acoust. Soc. Am. 59 368
[13] Soares C, Sergio M J 2003 J. Acoust. Soc. Am. 113 2587
[14] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (Berlin: Springer) p339
[15] Guo S M 2000 Ph. D. Dissertation (Beijing: Institute of Acoustics, China Academy of Sciences) (in Chinese) [郭圣明 2000 博士学位论文 (北京: 中国科学院声学研究所)]
[16] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
-
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401
[2] Tolstoy A 1993 Matched Field Processing for Underwater Acoustic (Singapore: World Scientific Publishing Co. Pte. Ltd.) pp11-41
[3] Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301
[4] Mirkin A N, Sibul L H 1994 J. Acoust. Soc. Am. 95 877
[5] Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 1909 (in Chinese)[鄢社锋, 马远良 2004 科学通报 49 1909]
[6] Antoniou A, Lu W S 2007 Practical Optimization: Algorithms and Engineering Applications (Berlin: Springer) p408
[7] Lu W S 2007 Use SeDuMi to Solve LP, SDP, and SCOP Problems: Remarks and Examples (Victoria: University of Victoria) p1
[8] Zhang S D, Han L, Han D 2011 Underwater Acoust. Eng. 35 67 (in Chinese) [张书第, 韩磊, 韩东 2011 水声工程 35 67]
[9] Yan S F, Hou C H, Ma X C 2007 Acta Acust. 32 151 (in Chinese) [鄢社锋, 侯朝焕, 马晓川 2007 声学学报 32 151]
[10] Vaccaro R J, Chhetri A, Brian F 2004 J. Acoust. Soc. Am. 115 3010
[11] Boyd S P, Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press) p525
[12] Bucker H P 1976 J. Acoust. Soc. Am. 59 368
[13] Soares C, Sergio M J 2003 J. Acoust. Soc. Am. 113 2587
[14] Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (Berlin: Springer) p339
[15] Guo S M 2000 Ph. D. Dissertation (Beijing: Institute of Acoustics, China Academy of Sciences) (in Chinese) [郭圣明 2000 博士学位论文 (北京: 中国科学院声学研究所)]
[16] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1
Catalog
Metrics
- Abstract views: 6358
- PDF Downloads: 658
- Cited By: 0