-
Existing detection methods have mismatch problem when applyed to the real uncertain ocean, which will lead to the detection performance degradation. However, there has been little work on defining the practical quantitative measures of environmental sensitivity. In this article we define a measure of environmental sensitivity for target detection performance loss in an uncertain ocean for realistic uncertainties in various environmental parameters (water-column sound speed profile and seabed geoacoustic properties). The Monte Carlo approach is used to transfer the environment uncertainty through the forward problem and quantify the resulting variability in the detection performance loss. The computer simulation is based on the Malta Plateau, a well-studied shallow-water region of the Mediterranean Sea. The simulation result shows that 1) the sensitivity is range and depth dependent and in the sound channel the sensitivity is much smaller than in other regions of the ocean; 2) the sound speed profile and the upper seabed layer are most sensitive parameters for the detection performance loss; 3) the sensitivity is frequency dependent. The seabed layer properties such as sediment thickness, density and attenuation coefficient have less influence on the detection as the frequency increases.
-
Keywords:
- detection performance degradation /
- environmental sensitivity /
- uncertain ocean environment
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401
[2] Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507
[3] Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942
[4] Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851
[5] Krolik J L 1992 J. Acoust. Soc. Am. 92 1408
[6] Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876
[7] Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[8] Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285
[9] Sibul L H 2006 J. Acoust. Soc. Am. 119 3342
[10] Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619
[11] Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128
[12] Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518
[13] Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302
[14] Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180
[15] Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394
[16] Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]
[17] Kessel R T 1999 J. Acoust. Soc. Am. 105 122
[18] Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42
[19] Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560
[20] Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110
[21] Finette S 2005 J. Acoust. Soc. Am. 117 997
[22] Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)
[23] Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67
[24] Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34
-
[1] Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401
[2] Pace N G, Jensen F B 2002 Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance (La Spezia, Italy: Kluwer Academic Publishers) p507
[3] Sha L W, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942
[4] Schmidt H, Baggeroer A B, Kuperman W A, Scheer E K 1990 J. Acoust. Soc. Am. 88 1851
[5] Krolik J L 1992 J. Acoust. Soc. Am. 92 1408
[6] Lee N, Zurk L M, Ward J 1999 Signals, Systems and Computers, 1999 Conference Record of the Thirty-Third Asilomar Conference on Pacific Grove California, October 24-27, 1999 p876
[7] Richardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280
[8] Shorey J A, Nolte L W, Krolik J L 1994 J. Comput. Acoust. 2 285
[9] Sibul L H 2006 J. Acoust. Soc. Am. 119 3342
[10] Culver R L, Camin H J 2008 J. Acoust. Soc. Am. 124 3619
[11] Ballard J A, Culver R L 2009 IEEE J. Ocean. Eng. 34 128
[12] Walker S C, Roux P, Kuperman W A 2005 J. Acoust. Soc. Am. 118 1518
[13] Wang H Z, Wang N, Gao D Z 2011 Chin. Phys. Lett. 28 114302
[14] Del Balzo D R, Feuillade C, Rowe M M 1988 J. Acoust. Soc. Am. 83 2180
[15] Tolstoy A 1989 J. Acoust. Soc. Am. 85 2394
[16] Zhao H F, Li J L, Gong X Y 2011 J. Harbin Eng. Univ. 32 200 (in Chinese) [赵航芳, 李建龙, 宫先仪 2011 哈尔滨工程大学学报 32 200]
[17] Kessel R T 1999 J. Acoust. Soc. Am. 105 122
[18] Dosso S E, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 121 42
[19] Dosso S E, Morley M G, Giles P M, Brooke G H, McCammon D F, Pecknold S, Hines P C 2007 J. Acoust. Soc. Am. 122 2560
[20] Pecknold S P, Masui K W, Hines P C 2008 J. Acoust. Soc. Am. 124 EL110
[21] Finette S 2005 J. Acoust. Soc. Am. 117 997
[22] Porter M B 1991 The Kraken Normal Mode Program (La Spezia, Italy: SACLANT Underwater Acoustic Research Center)
[23] Jensen F B, Kuperman W A, Portor M B, Schmidt H 2000 Computational Ocean Acoustics (New York: American Institute of Physics) p67
[24] Kay S M 1993 Fundamentals of Statistical Signal Processing, Volume II: Detection Theory (Upper Saddle River, New Jersey: Prentice Hall) p34
Catalog
Metrics
- Abstract views: 6572
- PDF Downloads: 615
- Cited By: 0