Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carlson iterating and rational approximation of arbitrary order fractional calculus operator

He Qiu-Yan Yuan Xiao

Citation:

Carlson iterating and rational approximation of arbitrary order fractional calculus operator

He Qiu-Yan, Yuan Xiao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of factional calculus theory and applications in different fields in recent years, the rational approximation problem of fractional calculus operator has become a hot spot of research. In the early 1950s and 1960s, Carlson and Halijak proposed regular Newton iterating method to implement rational approximation of the one-nth calculus operator. Carlson regular Newton iterating method has a great sense of innovation for the rational approximation of fractional calculus operator, however, it has been used only for certain calculus operators. The aim of this paper is to achieve rational approximation of arbitrary order fractional calculus operator. The realization is achieved via the generalization of Carlson regular Newton iterating method. To construct a rational function sequence which is convergent to irrational fractional calculus operator function, the rational approximation problem of fractional calculus operator is transformed into the algebra iterating solution of arithmetic root of binomial equation. To speed up the convergence, the pre-distortion function is introduced. And the Newton iterating formula is used to solve arithmetic root. Then the approximated rational impedance function of arbitrary order fractional calculus operator is obtained. For nine different operational orders with n changing from 2 to 5, the impedance functions are calculated respectively through choosing eight different initial impedances for a certain operational order. Considering fractional order operation characteristics of the impedance function and the physical realization of network synthesis, the impedance function should satisfy these basic properties simultaneously: computational rationality, positive reality principle and operational validity. In other words, there exists only rational computation of operational variable s in the expression of impedance function. All the zeros and poles of impedance function are located on the negative real axis of s complex plane or the left-half plane of s complex plane in conjugate pairs. The frequency-domain characteristics of impedance function approximate to those of ideal fractional calculus operator over a certain frequency range. Given suitable initial impedance and for an arbitrary operational order, it is proved that the impedance function could meet all properties above by studying the zero-pole distribution and analyzing frequency-domain characteristics of the impedance function. Therefore, the impedance function could take on operational performance of the ideal fractional calculus operator and achieve the physical realization. It is of great effectiveness in the generalization of this kind of method in both theory and experiment. The results educed in this paper are the basis for further theoretic research and engineering application in constructing the arbitrary order fractional circuits and systems.
      Corresponding author: Yuan Xiao, heqiuyan789@163.com
    • Funds: Project supported by the Science and Technology Plan of Chengdu, China (Grant No. 12DXYB255JH-002).
    [1]

    Steiglitz K 1964 IEEE Trans. Circuit Theory 11 160

    [2]

    Halijak C A 1964 IEEE Trans. Circuit Theory 11 494

    [3]

    Ren Y, Yuan X 2008 J. Sichuan Univ. (Nat. Sci. Ed.) 45 1100 (in Chinese) [任毅, 袁晓 2008 四川大学学报(自然科学版) 45 1100]

    [4]

    Dutta R S C 1967 IEEE Trans. Circuit Theory 14 264

    [5]

    Krishna B T, Reddy K V V S 2008 Act. Passive Electron.Compon. 2008 369421

    [6]

    Krishna B T 2011 Signal Process. 91 386

    [7]

    Liu Y, Pu Y F, Shen X D, Zhou J L 2012 J. Sichuan Univ. (Eng. Sci. Ed.) 44 153 (in Chinese) [刘 彦, 蒲亦非, 沈晓东, 周激流 2012 四川大学学报(工程科学版) 44 153]

    [8]

    Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Autom Control 29 441

    [9]

    Zou D, Yuan X 2013 J. Sichuan Univ. (Nat. Sci. Ed.) 50 293 (in Chinese) [邹道, 袁晓 2013 四川大学学报(自然科学版) 50 293]

    [10]

    Carlson G E 1960 M. S. Thesis (Manhattan: Kansas State University)

    [11]

    Carlson G E, Halijak C A 1962 IRE Trans. Circuit Theory 9 302

    [12]

    Carlson G E, Halijak C A 1964 IEEE Trans. Circuit Theory 11 210

    [13]

    Zu Y X, Lu Y Q 2007 Network Analysis and Synthesis (Beijing: China Machine Press) pp111-120 (in Chinese) [俎云霄, 吕玉琴 2007 网络分析与综合(北京:机械工业出版社) 第111-120页]

    [14]

    Liao K, Yuan X, Pu Y F, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 43 104 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2006 四川大学学报(自然科学版) 43 104]

    [15]

    Pu Y F, Yuan X, Liao K, Zhou J L, Zhang N, Zeng Y 2005 Proceedings of IEEE International Conference on Mechatronics and Automation Niagara Falls, Canada, July 29-August 1, 2005 p1375

    [16]

    Liao K, Yuan X, Pu Y F, Zhou J L 2005 J. Sichuan Univ. (Eng. Sci. Ed.) 37 150 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2005四川大学学报(工程科学版) 37 150]

    [17]

    Tsirimokou G Psychalinos C, Elwakil A S 2015 Analog. Integr. Circ. Sig. Process. 85 413

    [18]

    Pu Y F, Yuan X, Liao K, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 38 128 (in Chinese) [蒲亦非, 袁晓, 廖科, 周激流 2006 四川大学学报(工程科学版) 38 128]

    [19]

    Ortigueira M D Batista A G 2008 Phys. Lett. A 372 958

    [20]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 38 19

    [21]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [22]

    Sheng H, Chen Y Q, Qiu T S 2012 Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (Springer London, Dordrecht, Heidelberg, New York: Signals and Communication Technology) pp31-39

    [23]

    Elwakil A S 2010 IEEE Circuits Syst. Mag. 4 40

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego(USA): Academic Press) pp252-259

    [25]

    Machado J A T, Silva M F, Barbosa R S, Jesus I S, Reis C M, Marcos M G, Galhano A F 2010 Math. Probl. Eng. 2010 639801

    [26]

    Hu K X, Zhu K Q 2009 Chin. Phys. Lett. 26 108301

    [27]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504

    [28]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 64 040505]

    [29]

    Huang Y, Liu Y F Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 64 030505]

    [30]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp218-236 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第218-236页]

    [31]

    Valkenburg V M E (translated by Yang X J, Zheng J L, Yang W L) 1982 Network Synthesis (Beijing: Science Press) pp222-225 (in Chinese) [〔美〕Valkenburg V M E 著 (杨行峻, 郑君里, 杨为理 译) 1982 网络分析(北京: 科学出版社)第222 -225页]

    [32]

    Yi Z, Yuan X, Tao L, Liu P P 2015 J. Sichuan Univ. (Nat. Sci. Ed.) 6 1255 (in Chinese) [易舟, 袁晓, 陶磊, 刘盼盼 2015 四川大学学报 (自然科学版) 6 1255]

  • [1]

    Steiglitz K 1964 IEEE Trans. Circuit Theory 11 160

    [2]

    Halijak C A 1964 IEEE Trans. Circuit Theory 11 494

    [3]

    Ren Y, Yuan X 2008 J. Sichuan Univ. (Nat. Sci. Ed.) 45 1100 (in Chinese) [任毅, 袁晓 2008 四川大学学报(自然科学版) 45 1100]

    [4]

    Dutta R S C 1967 IEEE Trans. Circuit Theory 14 264

    [5]

    Krishna B T, Reddy K V V S 2008 Act. Passive Electron.Compon. 2008 369421

    [6]

    Krishna B T 2011 Signal Process. 91 386

    [7]

    Liu Y, Pu Y F, Shen X D, Zhou J L 2012 J. Sichuan Univ. (Eng. Sci. Ed.) 44 153 (in Chinese) [刘 彦, 蒲亦非, 沈晓东, 周激流 2012 四川大学学报(工程科学版) 44 153]

    [8]

    Sun H H, Abdelwahab A A, Onaral B 1984 IEEE Trans. Autom Control 29 441

    [9]

    Zou D, Yuan X 2013 J. Sichuan Univ. (Nat. Sci. Ed.) 50 293 (in Chinese) [邹道, 袁晓 2013 四川大学学报(自然科学版) 50 293]

    [10]

    Carlson G E 1960 M. S. Thesis (Manhattan: Kansas State University)

    [11]

    Carlson G E, Halijak C A 1962 IRE Trans. Circuit Theory 9 302

    [12]

    Carlson G E, Halijak C A 1964 IEEE Trans. Circuit Theory 11 210

    [13]

    Zu Y X, Lu Y Q 2007 Network Analysis and Synthesis (Beijing: China Machine Press) pp111-120 (in Chinese) [俎云霄, 吕玉琴 2007 网络分析与综合(北京:机械工业出版社) 第111-120页]

    [14]

    Liao K, Yuan X, Pu Y F, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 43 104 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2006 四川大学学报(自然科学版) 43 104]

    [15]

    Pu Y F, Yuan X, Liao K, Zhou J L, Zhang N, Zeng Y 2005 Proceedings of IEEE International Conference on Mechatronics and Automation Niagara Falls, Canada, July 29-August 1, 2005 p1375

    [16]

    Liao K, Yuan X, Pu Y F, Zhou J L 2005 J. Sichuan Univ. (Eng. Sci. Ed.) 37 150 (in Chinese) [廖科, 袁晓, 蒲亦非, 周激流 2005四川大学学报(工程科学版) 37 150]

    [17]

    Tsirimokou G Psychalinos C, Elwakil A S 2015 Analog. Integr. Circ. Sig. Process. 85 413

    [18]

    Pu Y F, Yuan X, Liao K, Zhou J L 2006 J. Sichuan Univ. (Eng. Sci. Ed.) 38 128 (in Chinese) [蒲亦非, 袁晓, 廖科, 周激流 2006 四川大学学报(工程科学版) 38 128]

    [19]

    Ortigueira M D Batista A G 2008 Phys. Lett. A 372 958

    [20]

    Ortigueira M D 2008 IEEE Circuits Syst. Mag. 38 19

    [21]

    Magin R, Ortigueira M D, Podlubny I, Trujillo J 2011 Signal Process. 91 350

    [22]

    Sheng H, Chen Y Q, Qiu T S 2012 Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications (Springer London, Dordrecht, Heidelberg, New York: Signals and Communication Technology) pp31-39

    [23]

    Elwakil A S 2010 IEEE Circuits Syst. Mag. 4 40

    [24]

    Podlubny I 1999 Fractional Differential Equations (San Diego(USA): Academic Press) pp252-259

    [25]

    Machado J A T, Silva M F, Barbosa R S, Jesus I S, Reis C M, Marcos M G, Galhano A F 2010 Math. Probl. Eng. 2010 639801

    [26]

    Hu K X, Zhu K Q 2009 Chin. Phys. Lett. 26 108301

    [27]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504

    [28]

    Pan G, Wei J 2015 Acta Phys. Sin. 64 040505 (in Chinese) [潘光, 魏静 2015 64 040505]

    [29]

    Huang Y, Liu Y F Peng Z M, Ding Y J 2015 Acta Phys. Sin. 64 030505 (in Chinese) [黄宇, 刘玉峰, 彭志敏, 丁艳军 2015 64 030505]

    [30]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp218-236 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第218-236页]

    [31]

    Valkenburg V M E (translated by Yang X J, Zheng J L, Yang W L) 1982 Network Synthesis (Beijing: Science Press) pp222-225 (in Chinese) [〔美〕Valkenburg V M E 著 (杨行峻, 郑君里, 杨为理 译) 1982 网络分析(北京: 科学出版社)第222 -225页]

    [32]

    Yi Z, Yuan X, Tao L, Liu P P 2015 J. Sichuan Univ. (Nat. Sci. Ed.) 6 1255 (in Chinese) [易舟, 袁晓, 陶磊, 刘盼盼 2015 四川大学学报 (自然科学版) 6 1255]

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Lü Jun-Fu, Peng Zhi-Min. Wide-range and calibration-free H2S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [3] Zhang Yue-Rong, Yuan Xiao. Arbitrary-order high-operation constant fractance approximation circuit—lattice cascaded two-port network. Acta Physica Sinica, 2021, 70(4): 048401. doi: 10.7498/aps.70.20201465
    [4] Wang Fei, Huang Yi-Wang, Sun Qi-Hang. Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment. Acta Physica Sinica, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [5] Li Zhao-Ming, Yang Wen-Ge, Ding Dan, Liao Yu-Rong. A novel algorithm of fifth-degree cubature Kalman filter for orbit determination at the lower bound approaching to the number of cubature points. Acta Physica Sinica, 2017, 66(15): 158401. doi: 10.7498/aps.66.158401
    [6] Fan Wen-Ping, Jiang Xiao-Yun. Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Physica Sinica, 2014, 63(14): 140202. doi: 10.7498/aps.63.140202
    [7] Diao Li-Jie, Zhang Xiao-Fei, Chen Di-Yi. Fractional-order multiple RLαCβ circuit. Acta Physica Sinica, 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [8] Shao Shu-Yi, Min Fu-Hong, Ma Mei-Ling, Wang En-Rong. Non-inductive modular circuit of dislocated synchronization of fractional-order Chua's system and its application. Acta Physica Sinica, 2013, 62(13): 130504. doi: 10.7498/aps.62.130504
    [9] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [10] Huang Li-Lian, Xin Fang, Wang Lin-Yu. Circuit implementation and control of a new fractional-order hyperchaotic system. Acta Physica Sinica, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [11] Wei Bing, Dong Yu-Hang, Wang Fei, Li Cun-Zhi. A modificatory algorithm for electrically thin dispersive layers base on shift operator finite-difference time-domain method. Acta Physica Sinica, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [12] Kong Wei-Shu, Hu Lin, Zhang Xing-Gang, Yue Guo-Lian. Experimental studdy on relation between volume fraction of sandpiles and flow rate of forming sandpiles. Acta Physica Sinica, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [13] Zhang Ruo-Xun, Yang Shi-Ping. Chaos in the fractional-order conjugate Chen system and its circuit emulation. Acta Physica Sinica, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [14] Min Fu-Hong, Yu Yang, Ge Cao-Jun. Circuit implementation and tracking control of the fractional-order hyper-chaotic Lü system. Acta Physica Sinica, 2009, 58(3): 1456-1461. doi: 10.7498/aps.58.1456
    [15] Chen Xiang-Rong, Liu Chong-Xin, Wang Fa-Qiang, Li Yong-Xun. Study on the fractional-order Liu chaotic system with circuit experiment and its control. Acta Physica Sinica, 2008, 57(3): 1416-1422. doi: 10.7498/aps.57.1416
    [16] A hyperchaotic system and its fractional order circuit simulation. Acta Physica Sinica, 2007, 56(12): 6865-6873. doi: 10.7498/aps.56.6865
    [17] Wang Fa-Qiang, Liu Chong-Xin. Study on the critical chaotic system with fractional order and circuit experiment. Acta Physica Sinica, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
    [18] SONG FEI-JUN. SPECTRUM ANALYSIS OF IMAGING INTEGRAL OPERATOR FOR OPTICAL SYSTEMS WITH SYMMETRIC ABERRATIONS. Acta Physica Sinica, 1992, 41(5): 750-758. doi: 10.7498/aps.41.750
    [19] XIONG XIAO-MING, ZHOU SHI-XUN. FINITE CLUSTER STUDIES OF THE FQHE. Acta Physica Sinica, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
    [20] FEI QING-YU, HUANG BING-ZHONG. THE TOTAL VOLUME FRACTION OF VOIDS OF RF SPUTTERED AMORPHOUS SILICON. Acta Physica Sinica, 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
Metrics
  • Abstract views:  6075
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  29 April 2016
  • Accepted Date:  27 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map