搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意阶高运算恒定性分抗逼近电路—标度格型级联双口网络

张月荣 袁晓

引用本文:
Citation:

任意阶高运算恒定性分抗逼近电路—标度格型级联双口网络

张月荣, 袁晓

Arbitrary-order high-operation constant fractance approximation circuit—lattice cascaded two-port network

Zhang Yue-Rong, Yuan Xiao
PDF
HTML
导出引用
  • 标度拓展经典负半阶分抗逼近电路, 可实现具有任意分数阶微积算子运算功能的分抗逼近电路, 但牺牲了运算恒定性. 从电路网络的角度分析具有恒定运算性能的负半阶Carlson分形格分抗逼近电路. 根据标度分形格分抗逼近电路的等效无源双口网络, 探讨该双口网络右侧端口的运算有效性, 设计具有高运算恒定性的任意阶标度分形格分抗逼近电路. 结合负实零极点对基元系统的零极点分布及其局域化特性, 阐述具有任意实数阶微积算子运算功能的标度分形格分抗逼近电路运算振荡现象的物理本质, 并从理论上分析有效抑制频域运算振荡现象的方法. 结合对称阻容T型节电路优化理论及方法, 对任意阶对称格型级联双口网络的频域逼近性能进行优化, 获得具有高逼近效益的任意阶标度分形格分抗逼近电路. 具有低振荡幅度的任意阶对称格型级联双口网络为高运算恒定性的分抗逼近电路设计及应用提供了一种新方法及思路.
    Fractional calculus is widely used in the analysis and description of various nonlinear and non-integer dimensional physical phenomena and processes in nature, and it gradually becomes a research hotspot. The order value of fractional-order system is more flexible, and fractional-order system is more accurate for analysis of non-integer dimensional physical phenomena and processes. In recent years, various negative half-order fractance approximation circuits and rational approximation algorithms for negative half-order fractional operators have been proposed and aroused people's research interest. The scaling extension of classic negative half-order fractance approximation circuits can facilitate the design of fractance approximation circuits with arbitrary-order fractional operators, but the operational constancy is sacrificed. The typical arbitrary-order fractance approximation circuits have operational oscillating phenomena in frequency domain, both the order-frequency characteristic curves and the phase-frequency characteristic curves have obvious oscillating waveforms. The operational oscillating phenomena will inevitably affect the fractional operator operational performance of the fractance approximation circuits, and result in errors in physical application. In this paper, the negative half-order Carlson fractal-lattice fractance approximation circuit with constant operational performance is analyzed from perspective of circuit network, the symmetry for equivalent two-port network of Carlson fractal-lattice fractance approximate circuit is analyzed. The equivalent two-port network of scaling fractal-lattice fractance approximation circuit is explored, Operational validity for the right port of scaling lattice cascaded two-port network is studied. A symmetrical lattice cascaded passive two-port network after scaling extension is designed through cascade of the ports on both sides of two-port network, and an arbitrary-order scaling fractal-lattice fractance approximation circuit with high-operation constancy is designed. By studying the zero-pole distribution and localization characteristics of the negative real zero-pole pair elemental unit, the physical nature of operational oscillating phenomenon for scaling fractal-lattice fractance approximation circuit with the operational performance of arbitrary-order fractional operator is explained theoretically, the methods and ideas to effectively suppress frequency-domain operational oscillating phenomenon are theoretically analyzed. The physical nature of operational oscillating amplitude reduction is explained by contrastively analyzing the pole-zero distributions of scaling fractal-lattice fractance approximation circuit and symmetrical lattice cascaded two-port network. According to the optimization principle of arbitrary-order fractance approximation circuits, the symmetrical resistor-capacitor T-section circuit optimization methods are used to optimize the frequency-domain approximation performance of any real-order symmetrical lattice cascaded two-port network, and it contributes to obtain any real-order scaling fractal-lattice fractance approximation circuit with high benefit of approximation. Arbitrary-order symmetrical lattice cascaded two-port network provides methods and ideas for the design of fractance approximation circuits with high-operation constancy.
      Corresponding author: Yuan Xiao, yuanxiao@scu.edu.cn
    [1]

    Karamali G, Dehghan M, Abbaszadeh M 2019 Eng. Comput.-Germany. 35 87Google Scholar

    [2]

    Oldham K B 1991 J. Appl. Electrochem. 21 1068Google Scholar

    [3]

    Su Y, Wang Y 2019 J. Funct. Space 2019 1

    [4]

    Hamrouni W, Abdennadher A 2016 Discrete Cont. Dyn-B 21 2509Google Scholar

    [5]

    Wu G C, Baleanu D, Deng Z G, Zeng S D 2015 Physica A 438 335Google Scholar

    [6]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circ. Syst. Signal Pr. 39 2Google Scholar

    [7]

    Ali Yüce, Tan N 2020 J. Eng. 2020 157Google Scholar

    [8]

    Subhadhra K S, Sharma R K, Gupta S S 2020 Analog Integr. Circuits Signal Process. 103 31Google Scholar

    [9]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circuits, Systems, and Signal Processing 39 2

    [10]

    Yu B, Pu Y F, He Q Y 2020 J. Circuits Syst. Comput. 29 2050083Google Scholar

    [11]

    Atan O 2018 Analog Integr. Circuits Signal Process. 96 485Google Scholar

    [12]

    Mahmoud G M, Abed-Elhameed T M, Ahmed M E 2016 Nonlinear Dyn. 83 1885Google Scholar

    [13]

    Yang S, Yu J, Hu C, Jiang H 2018 Neural Networks 104 104Google Scholar

    [14]

    袁晓 2015 分抗逼近电路之数学原理 (北京: 科学出版社) 第3—15

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3–15 (in Chinese)

    [15]

    Dutta R, Suhash C, Shenoi B A 1966 J. Franklin Inst. 282 318Google Scholar

    [16]

    Oldham K B 1973 Anal. Chem. 45 39

    [17]

    袁子, 袁晓 2017 电子学报 45 2511Google Scholar

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511Google Scholar

    [18]

    Hill R M, Dissado L A, Nigmatullin R R 1991 J. Phys. Condens. Matter 3 9773Google Scholar

    [19]

    Liu S H 1985 Phys. Rev. Lett. 55 529Google Scholar

    [20]

    He Q Y, Pu Y F, Yu B, Yuan X 2019 Circuits Syst. Signal Process. 38 4933Google Scholar

    [21]

    何秋燕, 袁晓 2016 65 160202Google Scholar

    He Q Y, Yuan X 2016 Acta Phys. Sin. 65 160202Google Scholar

    [22]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202Google Scholar

    [23]

    He Q Y, Pu Y F, Yu B 2020 Acta Autom. Sin. 7 1425Google Scholar

    [24]

    袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015年10月23日−26日 第295页

    Yuan X, Feng G Y 2015 Proceedings of the 26 th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23−26, 2015 p295

    [25]

    余波, 何秋燕, 袁晓 2018 67 070202Google Scholar

    Yu B, He Q Y, Yuan X 2018 Acta Phys. Sin. 67 070202Google Scholar

    [26]

    余波, 何秋燕, 袁晓, 杨丽贤 2018 四川大学学报(自然科学版) 55 301Google Scholar

    Yu B, He Q Y, Yuan X, Yang L X 2018 J. Sichuan Univ.(Nat. Sci. Ed.) 55 301Google Scholar

    [27]

    Herzel F, Osmany S A, Scheytt J C 2010 IEEE Trans. Circuits Syst. Regul. Rap. 57 1914Google Scholar

  • 图 1  有限k节Carlson格型分抗逼近电路 (a) 归一化原型电路; (b) 等效双口网络

    Fig. 1.  Finite k-stage Carlson Lattice fractance approximation circuit: (a) Normalized prototype circuit; (b) equivalent two-port network

    图 2  Carlson分形格分抗逼近电路的运算特征曲线 (a) 阶频特征曲线; (b) 相频特征曲线

    Fig. 2.  Operational characteristic curves of Carlson fractal-lattice fractance approximation circuit: (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 3  k节标度分形格分抗逼近电路 (a) 归一化原型电路; (b) 等效双口网络

    Fig. 3.  k-stage scaling fractal-lattice fractance approximation circuit: (a) Normalized prototype circuit; (b) equivalent two-port network

    图 4  正比拓展时左侧端口分抗与右侧端口分抗的运算特征曲线($ k=12, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Fig. 4.  Operational characteristic curves of left-side port fractance and right-side port fractance in direct proportion extension (k = 12, σ = 5): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 5  等效格型级联双口网络N

    Fig. 5.  Equivalent lattice cascaded two-port network N.

    图 6  标度分形格分抗与新网络N的运算特征曲线($ k\to {\infty }, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Fig. 6.  Operational characteristic curves of scaling fractal-lattice fractance and new network N ($ k\to {\infty }, \sigma =5 $): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 7  新网络N的归一化电路原理图

    Fig. 7.  Normalized circuit schematic diagram of new network N.

    图 8  新网络N与标度分形格分抗运算特征曲线对比图($ k=8, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Fig. 8.  Comparison diagram of operational characteristic curves of new network N and scaling fractal-lattice fractance (k = 8, σ = 5): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 9  一次子系统的运算特征曲线

    Fig. 9.  Operational characteristic curves of primary sub-system.

    图 10  (a) 正比拓展左侧分抗零极点指数(黑色)与右侧分抗的零极点指数(绿色)分布对比图; (b) 正比拓展左侧分抗零极点指数(黑色)与新网络N的零极点指数(红色)对比图

    Fig. 10.  (a) The distribution comparison diagram of zero-pole exponents (black) of left-side fractance and zero-pole exponents (green) of right-side fractance in direct proportion extension; (b) the distribution comparison diagram of zero-pole exponents (black) of left-side fractance and zero-pole exponents (red) of new network N.

    图 11  新双口网络N的电路优化原理图 (a) 正比拓展优化; (b) 反比拓展优化

    Fig. 11.  Circuit optimization principle diagram of new two-port network N: (a) Optimization in direct proportion extension; (b) optimization in inverse proportion extension.

    图 12  阶频特征曲线优化对比图 (a) 正比拓展优化 ($ k=8, \sigma =5 $); (b) 反比拓展优化 ($ k=8, \sigma =1/5 $)

    Fig. 12.  Optimization comparison diagram of order-frequency characteristic curves: (a) Optimization in direct proportion extension ($ k=8, \sigma =5 $); (b) optimization in inverse proportion extension ($ k=8, \sigma =1/5 $).

    图 13  模拟电路仿真的频域曲线对比图 (a) 幅频特征曲线; (b) 相频特征曲线

    Fig. 13.  Frequency-domain curves comparison diagram of analog circuits: (a) Amplitude-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 14  半阶微分运算电路原理图

    Fig. 14.  Schematic diagram of half-order differential operational circuit.

    图 15  周期对称方波的半阶微分运算 (a) 理论结果; (b) 模拟电路仿真结果

    Fig. 15.  The half-order differential operation of a periodic symmetrical square wave: (a) Theoretical result; (b) analog circuit simulation result

    Baidu
  • [1]

    Karamali G, Dehghan M, Abbaszadeh M 2019 Eng. Comput.-Germany. 35 87Google Scholar

    [2]

    Oldham K B 1991 J. Appl. Electrochem. 21 1068Google Scholar

    [3]

    Su Y, Wang Y 2019 J. Funct. Space 2019 1

    [4]

    Hamrouni W, Abdennadher A 2016 Discrete Cont. Dyn-B 21 2509Google Scholar

    [5]

    Wu G C, Baleanu D, Deng Z G, Zeng S D 2015 Physica A 438 335Google Scholar

    [6]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circ. Syst. Signal Pr. 39 2Google Scholar

    [7]

    Ali Yüce, Tan N 2020 J. Eng. 2020 157Google Scholar

    [8]

    Subhadhra K S, Sharma R K, Gupta S S 2020 Analog Integr. Circuits Signal Process. 103 31Google Scholar

    [9]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circuits, Systems, and Signal Processing 39 2

    [10]

    Yu B, Pu Y F, He Q Y 2020 J. Circuits Syst. Comput. 29 2050083Google Scholar

    [11]

    Atan O 2018 Analog Integr. Circuits Signal Process. 96 485Google Scholar

    [12]

    Mahmoud G M, Abed-Elhameed T M, Ahmed M E 2016 Nonlinear Dyn. 83 1885Google Scholar

    [13]

    Yang S, Yu J, Hu C, Jiang H 2018 Neural Networks 104 104Google Scholar

    [14]

    袁晓 2015 分抗逼近电路之数学原理 (北京: 科学出版社) 第3—15

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3–15 (in Chinese)

    [15]

    Dutta R, Suhash C, Shenoi B A 1966 J. Franklin Inst. 282 318Google Scholar

    [16]

    Oldham K B 1973 Anal. Chem. 45 39

    [17]

    袁子, 袁晓 2017 电子学报 45 2511Google Scholar

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511Google Scholar

    [18]

    Hill R M, Dissado L A, Nigmatullin R R 1991 J. Phys. Condens. Matter 3 9773Google Scholar

    [19]

    Liu S H 1985 Phys. Rev. Lett. 55 529Google Scholar

    [20]

    He Q Y, Pu Y F, Yu B, Yuan X 2019 Circuits Syst. Signal Process. 38 4933Google Scholar

    [21]

    何秋燕, 袁晓 2016 65 160202Google Scholar

    He Q Y, Yuan X 2016 Acta Phys. Sin. 65 160202Google Scholar

    [22]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202Google Scholar

    [23]

    He Q Y, Pu Y F, Yu B 2020 Acta Autom. Sin. 7 1425Google Scholar

    [24]

    袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015年10月23日−26日 第295页

    Yuan X, Feng G Y 2015 Proceedings of the 26 th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23−26, 2015 p295

    [25]

    余波, 何秋燕, 袁晓 2018 67 070202Google Scholar

    Yu B, He Q Y, Yuan X 2018 Acta Phys. Sin. 67 070202Google Scholar

    [26]

    余波, 何秋燕, 袁晓, 杨丽贤 2018 四川大学学报(自然科学版) 55 301Google Scholar

    Yu B, He Q Y, Yuan X, Yang L X 2018 J. Sichuan Univ.(Nat. Sci. Ed.) 55 301Google Scholar

    [27]

    Herzel F, Osmany S A, Scheytt J C 2010 IEEE Trans. Circuits Syst. Regul. Rap. 57 1914Google Scholar

  • [1] 张红伟, 付常磊, 潘志翔, 丁大为, 王金, 杨宗立, 刘涛. 分数阶忆阻Henon映射的可控多稳定性及其视频加密应用.  , 2024, 73(18): 180501. doi: 10.7498/aps.73.20240942
    [2] 余波, 何秋燕, 袁晓. 任意阶标度分形格分抗与非正则格型标度方程.  , 2018, 67(7): 070202. doi: 10.7498/aps.67.20171671
    [3] 何秋燕, 袁晓. Carlson与任意阶分数微积分算子的有理逼近.  , 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [4] 刘式达, 付遵涛, 刘式适. 间歇湍流的分数阶动力学.  , 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [5] 刁利杰, 张小飞, 陈帝伊. 分数阶并联RLαCβ电路.  , 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [6] 李丽香, 彭海朋, 罗群, 杨义先, 刘喆. 一种分数阶非线性系统稳定性判定定理的问题及分析.  , 2013, 62(2): 020502. doi: 10.7498/aps.62.020502
    [7] 胡建兵, 赵灵冬. 分数阶系统稳定性理论与控制研究.  , 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [8] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究.  , 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [9] 李东, 邓良明, 杜永霞, 杨媛媛. 分数阶超混沌Chen系统和分数阶超混沌Rssler系统的异结构同步.  , 2012, 61(5): 050502. doi: 10.7498/aps.61.050502
    [10] 方桂娟, 孙顺红, 蒲继雄. 分数阶双涡旋光束的实验研究.  , 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [11] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步.  , 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [12] 胡建兵, 肖建, 赵灵冬. 阶次不等的分数阶混沌系统同步.  , 2011, 60(11): 110515. doi: 10.7498/aps.60.110515
    [13] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步.  , 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [14] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用.  , 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [15] 胡建兵, 韩焱, 赵灵冬. 分数阶系统的一种稳定性判定定理及在分数阶统一混沌系统同步中的应用.  , 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [16] 胡建兵, 韩 焱, 赵灵冬. 基于Lyapunov方程的分数阶混沌系统同步.  , 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [17] 张若洵, 杨世平. 一个分数阶新超混沌系统的同步.  , 2008, 57(11): 6837-6843. doi: 10.7498/aps.57.6837
    [18] 张若洵, 杨世平. 分数阶混沌系统的异结构同步.  , 2008, 57(11): 6852-6858. doi: 10.7498/aps.57.6852
    [19] 王发强, 刘崇新. 分数阶临界混沌系统及电路实验的研究.  , 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
    [20] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程.  , 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
计量
  • 文章访问数:  3958
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 修回日期:  2020-10-02
  • 上网日期:  2021-02-05
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map