Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

System of label-free three-dimensional optical coherence tomography angiography with high sensitivity and motion contrast and its applications in brain science

Zhou Li-Ping Li Pei Pan Cong Guo Li Ding Zhi-Hua Li Peng

Citation:

System of label-free three-dimensional optical coherence tomography angiography with high sensitivity and motion contrast and its applications in brain science

Zhou Li-Ping, Li Pei, Pan Cong, Guo Li, Ding Zhi-Hua, Li Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Combining three-dimensional (3D) imaging ability of optical coherence tomography (OCT) with movement recognition ability of dynamic scattering technique, label-free 3D OCT angiography can be realized, which has a wide range of applications in basic science research and clinical diagnosis. At no expense of line scanning speed, the scale of capillaries can be detected by improving the sensitivity through the interframe analysis. However, there exists a certain residual overlap between dynamic flow signals and static tissue beds due to a series of reasons, thus making it difficult to completely distinguish dynamic flow signals from static tissue beds. Thus, when it comes to threshold segmentation for the blood flow signal extraction, classification error rate is inevitable, resulting in the decrease of the motion contrast of angiogram. In order to reduce classification error rate between static tissue beds and dynamic flow signals for high motion-contrast angiography, we propose a method of component compounding in wavelet domain. Three main steps are needed for this method. Firstly, on the basis of two-dimensional (2D) discrete static wavelet transform, a frame image can be decomposed into multiple levels. Each level has four components, i.e., approximation component, horizontal detail component, vertical detail component and diagonal detail component. Different decomposition levels and types of wavelet can be selected according to the demand. Secondly, the algorithm of inverse iteration compounding is used, which contains the arithmetic mean and the geometric mean of the components of adjacent decomposition levels. The adopted order for inverse iteration compounding is from the last level to the first one. The weight of the arithmetic mean to the geometric mean is one to one. In this way, four compounding components can be obtained. Thirdly, a new frame image with higher motion contrast can be obtained by using 2D discrete static wavelet inverse transform of the four compounding components. Both flow phantom and live animal experiments are performed. The results show that classification error rate decreases by 83% and 71% respectively after component compounding in wavelet domain. Besides, the angiogram has an improved motion contrast and a better vessel connectivity, which may contribute to better and wider applications of OCT angiography. Furthermore, based on the developed system, the preliminary imaging studies on the model of local stroke are conducted. In this experiment, we record the 3D data of SD mouse brain before and after the local stroke and on the tenth day. As a consequence, a clear presentation for the whole process of stroke model formation, vessel damage and vessel recovery is achieved, which may be beneficial to studying the mechanism of local stroke model.
      Corresponding author: Li Peng, Peng_Li@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475143, 11404285, 61335003, 61327007, 61275196), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14F050007), the National High Technology Research and Development Program of China (Grant No. 2015AA020515), the Zhejiang Province Science and Technology, China (Grant No. 2015C33108), the Fundamental Research Funds for the Central Universities, China (Grant No. 2014QNA5017), and the Scientific Research Foundation for Returned Scholars, Ministry of Education of China.
    [1]

    Hong G S, Lee J C, Robinson J T, Raaz U, Xie L M, Huang N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841

    [2]

    Barton J, Stromski S 2005 Opt. Express 13 5234

    [3]

    Fingler J, Zawadzki R J, Werner J S, Schwartz D, Fraser S E 2009 Opt. Express 17 22190

    [4]

    Cheng Y X, Guo L, Pan C, Lu T T, Hong T Y, Ding Z H, Li P 2015 J. Biomed. Opt. 20 116004

    [5]

    Guo L, Li P, Pan C, Liao R J, Cheng Y X, Hu W W, Chen Z, Ding Z H, Li P 2016 J. Opt. 18 025301

    [6]

    Choi W, Mohler K J, Potsaid B, Lu C D, Liu J J, Jayaraman V, Cable A E, Duker J S, Huber R, Fujimoto J G 2013 PLoS ONE 8 e81499

    [7]

    Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y 2006 Opt. Express 14 7821

    [8]

    Jia Y, Bailey S T, Wilson D J, Tan O, Klein M L, Flaxel C J, Potsaid B, Liu J J, Lu C D, Kraus M F, Fujimoto J G, Huang D 2014 Ophthalmology 121 1435

    [9]

    Wang R K, An L, Francis P, Wilson D J 2010 Opt. Lett. 35 1467

    [10]

    Li P, An L, Reif R, Shen T T, Johnstone M, Wang R K 2011 Biomed. Opt. Express 2 3109

    [11]

    Li P, Sun Y, Hariri S, Zhou Z, Inamoto Y, Lee S J, Shen T T, Wang R K 2015 Quant. Imaging Med. Surg. 5 163

    [12]

    Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A 2007 Opt. Express 15 4083

    [13]

    Jia Y, Li P, Wang R K 2011 J. Biomed. Opt. 16 096019

    [14]

    Guo L, Shi R, Zhang C, Zhu D, Ding Z H, Li P 2016 J. Biomed. Opt. 21 081202

    [15]

    Pan C, Guo L, Shen Y, Yan X G, Ding Z H, Li P 2016 Acta Phys. Sin. 65 014201 (in Chinese) [潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏 2016 65 014201]

    [16]

    Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E 2009 Nat. Med. 15 1219

    [17]

    Mariampillai A, Standish B A, Moriyama E H, Khurana M, Munce N R, Leung M K K, Jiang J, Cable A, Wilson B C, Vitkin I A, Yang V X D 2008 Opt. Lett. 33 1530

    [18]

    Enfield J, Jonathan E, Leahy M 2011 Biomed. Opt. Express 2 1184

    [19]

    Jia Y, Li P, Dziennis S, Wang R K 2011 PLoS ONE 6 e26802

    [20]

    Mariampillai A, Leung M K K, Jarvi M, Standish B A, Lee K, Wilson B C, Vitkin A, Yang V X D 2010 Opt. Lett. 35 1257

    [21]

    Choi W J, Reif R, Yousefi S, Wang R K K 2014 J. Biomed. Opt. 19 036010

    [22]

    Liu G J, Chou L, Jia W C, Qi W J, Choi B, Chen Z P 2011 Opt. Express 19 11429

    [23]

    Yu L F, Chen Z P 2010 J. Biomed. Opt. 15 016029

    [24]

    Fingler J, Schwartz D, Yang C H, Fraser S E 2007 Opt. Express 15 12636

    [25]

    Pircher M, Gotzinger E, Leitgeb R, Fercher A F, Hitzenberger C K 2003 J. Biomed. Opt. 8 565

    [26]

    Iftimia N, Bouma B E, Tearney G J 2003 J. Biomed. Opt. 8 260

    [27]

    Wang H, Rollins A M 2009 J. Biomed. Opt. 14 030512

    [28]

    Storen T, Royset A, Giskeodegard N H, Pedersen H M, Lindmo T {2004 Proceedings of SPIE - The International Society for Optical Engineering 5316 196

    [29]

    Jia Y L, Tan O, Tokayer J, Potsaid B, Wang Y M, Liu J J, Kraus M F, Subhash H, Fujimoto J G, Hornegger J, Huang D 2012 Opt. Express 20 4710

    [30]

    Li P, Cheng Y X, Zhou L P, Pan C, Ding Z H, Li P 2016 Opt. Lett. 41 1058

    [31]

    Adler D C, Ko T H, Fujimoto J G 2004 Opt. Lett. 29 2878

    [32]

    Chitchian S, Fiddy M A, Fried N M 2009 J. Biomed. Opt. 14 014031

    [33]

    Mayer M A, Borsdorf A, Wagner M, Hornegger J, Mardin C Y, Tornow R P 2012 Biomed. Opt. Express 3 572

    [34]

    Xu J B, Ou H Y, Sun C R, Chui P C, Yang V X D, Lam E Y, Wong K K Y 2013 J. Biomed. Opt. 18 096002

  • [1]

    Hong G S, Lee J C, Robinson J T, Raaz U, Xie L M, Huang N F, Cooke J P, Dai H J 2012 Nat. Med. 18 1841

    [2]

    Barton J, Stromski S 2005 Opt. Express 13 5234

    [3]

    Fingler J, Zawadzki R J, Werner J S, Schwartz D, Fraser S E 2009 Opt. Express 17 22190

    [4]

    Cheng Y X, Guo L, Pan C, Lu T T, Hong T Y, Ding Z H, Li P 2015 J. Biomed. Opt. 20 116004

    [5]

    Guo L, Li P, Pan C, Liao R J, Cheng Y X, Hu W W, Chen Z, Ding Z H, Li P 2016 J. Opt. 18 025301

    [6]

    Choi W, Mohler K J, Potsaid B, Lu C D, Liu J J, Jayaraman V, Cable A E, Duker J S, Huber R, Fujimoto J G 2013 PLoS ONE 8 e81499

    [7]

    Makita S, Hong Y, Yamanari M, Yatagai T, Yasuno Y 2006 Opt. Express 14 7821

    [8]

    Jia Y, Bailey S T, Wilson D J, Tan O, Klein M L, Flaxel C J, Potsaid B, Liu J J, Lu C D, Kraus M F, Fujimoto J G, Huang D 2014 Ophthalmology 121 1435

    [9]

    Wang R K, An L, Francis P, Wilson D J 2010 Opt. Lett. 35 1467

    [10]

    Li P, An L, Reif R, Shen T T, Johnstone M, Wang R K 2011 Biomed. Opt. Express 2 3109

    [11]

    Li P, Sun Y, Hariri S, Zhou Z, Inamoto Y, Lee S J, Shen T T, Wang R K 2015 Quant. Imaging Med. Surg. 5 163

    [12]

    Wang R K, Jacques S L, Ma Z, Hurst S, Hanson S R, Gruber A 2007 Opt. Express 15 4083

    [13]

    Jia Y, Li P, Wang R K 2011 J. Biomed. Opt. 16 096019

    [14]

    Guo L, Shi R, Zhang C, Zhu D, Ding Z H, Li P 2016 J. Biomed. Opt. 21 081202

    [15]

    Pan C, Guo L, Shen Y, Yan X G, Ding Z H, Li P 2016 Acta Phys. Sin. 65 014201 (in Chinese) [潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏 2016 65 014201]

    [16]

    Vakoc B J, Lanning R M, Tyrrell J A, Padera T P, Bartlett L A, Stylianopoulos T, Munn L L, Tearney G J, Fukumura D, Jain R K, Bouma B E 2009 Nat. Med. 15 1219

    [17]

    Mariampillai A, Standish B A, Moriyama E H, Khurana M, Munce N R, Leung M K K, Jiang J, Cable A, Wilson B C, Vitkin I A, Yang V X D 2008 Opt. Lett. 33 1530

    [18]

    Enfield J, Jonathan E, Leahy M 2011 Biomed. Opt. Express 2 1184

    [19]

    Jia Y, Li P, Dziennis S, Wang R K 2011 PLoS ONE 6 e26802

    [20]

    Mariampillai A, Leung M K K, Jarvi M, Standish B A, Lee K, Wilson B C, Vitkin A, Yang V X D 2010 Opt. Lett. 35 1257

    [21]

    Choi W J, Reif R, Yousefi S, Wang R K K 2014 J. Biomed. Opt. 19 036010

    [22]

    Liu G J, Chou L, Jia W C, Qi W J, Choi B, Chen Z P 2011 Opt. Express 19 11429

    [23]

    Yu L F, Chen Z P 2010 J. Biomed. Opt. 15 016029

    [24]

    Fingler J, Schwartz D, Yang C H, Fraser S E 2007 Opt. Express 15 12636

    [25]

    Pircher M, Gotzinger E, Leitgeb R, Fercher A F, Hitzenberger C K 2003 J. Biomed. Opt. 8 565

    [26]

    Iftimia N, Bouma B E, Tearney G J 2003 J. Biomed. Opt. 8 260

    [27]

    Wang H, Rollins A M 2009 J. Biomed. Opt. 14 030512

    [28]

    Storen T, Royset A, Giskeodegard N H, Pedersen H M, Lindmo T {2004 Proceedings of SPIE - The International Society for Optical Engineering 5316 196

    [29]

    Jia Y L, Tan O, Tokayer J, Potsaid B, Wang Y M, Liu J J, Kraus M F, Subhash H, Fujimoto J G, Hornegger J, Huang D 2012 Opt. Express 20 4710

    [30]

    Li P, Cheng Y X, Zhou L P, Pan C, Ding Z H, Li P 2016 Opt. Lett. 41 1058

    [31]

    Adler D C, Ko T H, Fujimoto J G 2004 Opt. Lett. 29 2878

    [32]

    Chitchian S, Fiddy M A, Fried N M 2009 J. Biomed. Opt. 14 014031

    [33]

    Mayer M A, Borsdorf A, Wagner M, Hornegger J, Mardin C Y, Tornow R P 2012 Biomed. Opt. Express 3 572

    [34]

    Xu J B, Ou H Y, Sun C R, Chui P C, Yang V X D, Lam E Y, Wong K K Y 2013 J. Biomed. Opt. 18 096002

  • [1] Zang Jia-Qi, Xu Kai-Liang, Han Qing-Jian, Lu Qi-Yong, Mei Yong-Feng, Ta De-An. Non-contrast-enhanced ultrafast ultrasound Doppler imaging of spinal cord micro-vessels. Acta Physica Sinica, 2021, 70(11): 114304. doi: 10.7498/aps.70.20201878
    [2] Yao Jun-Cai, Shen Jing. Objective assessment of image quality based on image content contrast perception. Acta Physica Sinica, 2020, 69(14): 148702. doi: 10.7498/aps.69.20200335
    [3] Zhou Bo-Rui, Tan Yi-Dong, Shen Xue-Ju, Zhu Kai-Yi, Bao Li-Ping. Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonicmicrobubble contrast agent. Acta Physica Sinica, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [4] Hu Zhe-Hao, Shangguan Zi-Wei, Qiu Jian-Rong, Yang Shan-Shan, Bao Wen, Shen Yi, Li Peng, Ding Zhi-Hua. Stimulated-emission based spectral domain optical coherence tomography for molecular contrast imaging. Acta Physica Sinica, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [5] Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system. Acta Physica Sinica, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [6] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [7] Wu Yuan-Qing, Wang Yang, Zhang Yan-Tao, Zhang Yu-Feng, Liu Chun-Mei. Effect of contrast threshold function correction on NVThermIP model. Acta Physica Sinica, 2018, 67(21): 210702. doi: 10.7498/aps.67.20180493
    [8] Wang Yi, Guo Zhe, Zhu Li-Da, Zhou Hong-Xian, Ma Zhen-He. Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography. Acta Physica Sinica, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [9] Tian Heng, Zhu Jing-Ping, Zhang Yun-Yao, Guan Jin-Ge, Hou Xun. Image contrast for different imaging methods in turbid media. Acta Physica Sinica, 2016, 65(8): 084201. doi: 10.7498/aps.65.084201
    [10] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [11] Zheng Chi-Chao, Peng Hu, Han Zhi-Hui. Medical ultrasound imaging based on cross-correlation adaptive weighting. Acta Physica Sinica, 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [12] Song Hong-Sheng, Zhuang Qiao, Liu Gui-Yuan, Qin Xi-Feng, Cheng Chuan-Fu. Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region. Acta Physica Sinica, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [13] Bao Wen, Ding Zhi-Hua, Wang Chuan, Mei Sheng-Tao. Phase sensitive spectral domain optical coherence tomography for latent fingerprint detection. Acta Physica Sinica, 2013, 62(11): 114202. doi: 10.7498/aps.62.114202
    [14] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [15] Shuai Wen-Juan, Feng Shao-Tong, Nie Shou-Ping, Zhu Zhu-Qing. Sequence images hiding technique of three-dimensional object based on principal component analysis in wavelet domain. Acta Physica Sinica, 2011, 60(3): 034203. doi: 10.7498/aps.60.034203
    [16] Wang Kai, Zeng Yan, Ding Zhi-Hua, Meng Jie, Shi Guo-Hua, Zhang Yu-Dong. Imaging quality enhancement by deconvolution in spectral domain optical coherence tomography. Acta Physica Sinica, 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [17] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [18] Yi Xu-Nong, Hu Wei, Luo Hai-Lu, Zhu Jing. Study of small-scale self-focusing in laser beams by high-order contrast. Acta Physica Sinica, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [19] Song Hong-Sheng, Cheng Chuan-Fu, Zhang Ning-Yu, Ren Xiao-Rong, Teng Shu-Yun, Xu Zhi-Zhan. Study on the dependence of the contrast of image speckles produced by strong scattering-object on random surface and imaging system. Acta Physica Sinica, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [20] Zhang Bin, Liu Yan-Jun, Xu Ke-Shu. Electro-optical properties of holographic polymer dispersed liquid crystal devices. Acta Physica Sinica, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
Metrics
  • Abstract views:  6084
  • PDF Downloads:  379
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2016
  • Accepted Date:  19 May 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map