Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Objective assessment of image quality based on image content contrast perception

Yao Jun-Cai Shen Jing

Citation:

Objective assessment of image quality based on image content contrast perception

Yao Jun-Cai, Shen Jing
PDF
HTML
Get Citation
  • Image quality assessment (IQA) plays a very important role in acquiring, storing, transmitting and processing image and video. Using the characteristics of human visual perception and the features of the gray, gradient, local contrast, and blurring of image, an IQA method based on the image content contrast perception is proposed in the paper, which is called MPCC. In the proposed method, firstly, combining with the characteristics of human visual perception, based on the definition of the contrast in physics, a novel definition for image quality and its calculation method are proposed. Then, based on the gray gradient co-occurrence matrix, a novel concept, namely the gray-gradient entropy of image, and its calculation method, are proposed. And based on the gray-gradient entropy, local contrast and blurring of image, a method of describing the image content and their visual perception are proposed. Finally, based on the image content features and the image quality definition, an IQA method and its mathematical model are proposed by comprehensive analysis. Further, the proposed IQA model MPCC is tested by using 119 reference images and 6395 distorted images from the five open image databases (LIVE, CSIQ, TID2008, TID2013 and IVC). Moreover, the influences of the 52 distortion types on IQA are analyzed. In addition, in order to illustrate the advantages of the MPCC model, it is compared with the seven existing typical IQA models in terms of the accuracy, complexity and generalization performance of model. The experimental results show that the accuracy PLCC of the MPCC model can achieve 0.8616 at lowest and 0.9622 at most in the five databases; among the 52 distortion types, the two distortion types, namely the change of color saturation and the local block-wise distortions of different intensity, have the greatest influence on IQA, and the accuracy PLCC values of the seven existing IQA models are almost all below 0.6, but the PLCC of the MPCC model can reach more than 0.68; and the comprehensive benefit of the performance of the MPCC model is better than those of the seven existing IQA models. These results of test and comparison above show that the proposed IQA method is effective and feasible, and the corresponding model has an excellent performance.
      Corresponding author: Yao Jun-Cai, sxhzyjc@sina.com
    [1]

    Nightingale J, Salva P, Alcarazcalero J M, Wang Q 2018 IEEE Trans. Broadcast. 64 621Google Scholar

    [2]

    丰卉, 孙彪, 马书根 2017 66 180202Google Scholar

    Feng H, Sun B, Ma S G 2017 Acta Phys. Sin. 66 180202Google Scholar

    [3]

    Yao J C, Liu G Z 2019 IEEE Trans. Broadcast. 65 546Google Scholar

    [4]

    Chandler D M, Hemami S S 2007 IEEE Trans. Image Process. 16 2284Google Scholar

    [5]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

    [6]

    Zhang L, Zhang L, Mou X, Zhang D 2011 IEEE Trans. Image Process. 20 2378Google Scholar

    [7]

    Xue W, Zhang L, Mou X, Bovik A C 2014 IEEE Trans. Image Process. 23 684Google Scholar

    [8]

    Zhang L, Shen Y, Li H 2014 IEEE Trans. Image Process. 23 4270Google Scholar

    [9]

    Larson E C, Chandler D M 2010 J. Electron. Imaging 19 011006Google Scholar

    [10]

    Fang Y M, Yan J B, Li L D, Wu J J, Lin W S 2018 IEEE Trans. Image Process. 27 1600Google Scholar

    [11]

    方志明, 崔荣一, 金璟璇 2017 66 109501Google Scholar

    Fang Z M, Cui R Y, Jin J X 2017 Acta Phys. Sin. 66 109501Google Scholar

    [12]

    Qi H, Jiao S H, Lin W S, Tang L, Shen W H 2014 Electron. Lett. 50 1435

    [13]

    Zheng L, Shen L, Chen J, An P, Luo J 2019 IEEE Trans. Multimedia 21 2057Google Scholar

    [14]

    Yang X, Wang T, Ji G 2020 IET Image Proc. 14 384Google Scholar

    [15]

    Ahar A, Barri A, Schelkens P 2018 IEEE Trans. Image Process. 27 879Google Scholar

    [16]

    Zhou W J, Yu L, Zhou Y, Qiu W W, Wu M W 2018 IEEE Trans. Image Process. 27 2086

    [17]

    Yao J C, Liu G Z 2018 IET Image Proc. 12 872Google Scholar

    [18]

    Wang X, Meng F, Huang X Y 2018 Proceeding of the 11 th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) Beijing, China, October 13—15, 2018 p1

    [19]

    Ginesu G, Massidda F, Giusto D D 2006 Signal Process. Image Commun. 21 316Google Scholar

    [20]

    Nadenau M 2000 Ph. D Dissertation (Lausanne: École Polytechnique Fédérale de Lausanne)

    [21]

    Niu Y Z, Zhang H F, Guo W Z, Ji R R 2018 IEEE Trans. Circuits Syst. Video Technol. 28 849

    [22]

    王鸿南, 钟文, 汪静, 夏德深 2004 中国图象图形学报 9 828Google Scholar

    Wang H N, Zhong W, Wang J, Xia D S 2004 J. Image Graph. 9 828Google Scholar

    [23]

    Sheikh H R, Wang Z, Cormack L LIVE Image Quality Assessment Database Release 2 Available: http://live.ece. utexas.edu/research/quality [2019-12-20]

    [24]

    Larson E C, Chandler D M The CSIQ image database http://vision.okstate.edu/?loc=csiq [2019-12-20]

    [25]

    Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F Tampere Image Database 2008 TID2008, version 1.0 http://www.ponomarenko.info/tid2008.htm [2019-12-20]

    [26]

    Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C C J 2015 Signal Process. Image Commun. 30 57

    [27]

    Athar S, Wang Z 2019 IEEE Access 7 140030Google Scholar

    [28]

    Callet L, Patrick A F Subjective quality assessment IRCCyN /IVC database http://www2.irccyn.ec-nantes.fr/ivcdb/ [2019-12-20]

    [29]

    Yi Z, Chandler D M 2018 IEEE Trans. Image Process. 27 5433

    [30]

    Dai T, Gu K, Niu L, et al. 2018 Neurocomputing 290 185

    [31]

    Zhang C, Cheng W, Hirakawa K 2019 IEEE Trans. Image Process. 28 1732

  • 图 1  所提IQA方法的流程图

    Figure 1.  The architecture of the proposed IQA method.

    图 2  4个数据库中的图像主客观IQA结果之间的散点图 (a) LIVE; (b) CSIQ; (c) TID2008; (d) TID2013

    Figure 2.  Scatter plots between the subjective and objective IQA results of images in four databases: (a) LIVE; (b) CSIQ; (c) TID2008; (d) TID2013

    图 3  所提模型对IVC数据库中灰度和单色图像评价结果

    Figure 3.  IQA results of the gray and monochrome images in IVC database by the proposed model.

    图 4  基于TID2008数据库中的图像IQA结果比较所提模型与现有7个模型的精度 (a) PSNR-TID2008; (b) VSNR-TID2008; (c) SSIM-TID2008; (d) FSIMc-TID2008; (e) VSI-TID2008; (f) GMSD-TID2008; (g) MAD-TID2008; (h) MPCC-TID2008

    Figure 4.  Comparing the accuracy of the proposed model with those of the existing 7 models based on the IQA results in TID2008 database: (a) PSNR-TID2008; (b) VSNR-TID2008; (c) SSIM-TID2008; (d) FSIMc-TID2008; (e) VSI-TID2008; (f) GMSD-TID2008; (g) MAD-TID2008; (h) MPCC-TID2008.

    图 5  基于平均每10幅图像的评价运行时间比较8个IQA模型的复杂性

    Figure 5.  Comparison of the complexity of 8 IQA models based on the IQA running time per 10 images.

    图 6  基于3个数据库中28类失真图像评价结果的PLCC值以8个IQA模型的精度对比 (a) CSIQ; (b) LIVE; (c) TID2008

    Figure 6.  Accuracy comparisons among 8 IQA metrics based on PLCC of IQA results from 28 types of distortion images in three databases: (a) CSIQ; (b) LIVE; (c) TID2008.

    图 7  所提IQA模型对CSIQ库中6种失真类型的失真图像评价结果的散点图 (a) awgn; (b) jpeg; (c) jpeg2k; (d) fnoise; (e) blur; (f) contrast

    Figure 7.  Scatter plots of the IQA results of 6 kinds of distorted images in CSIQ database evaluating by the proposed IQA model: (a) awgn; (b) jpeg; (c) jpeg2k; (d) fnoise; (e) blur; (f) contrast.

    图 10  所提IQA模型对TID2013库中24种失真类型的失真图像评价结果的散点图 (a) AGN; (b) NCC; (c) SCN; (d) MN; (e) HFN; (f) IN; (g) QN; (h) GB; (i) ID; (j) JPEG; (k) JPEG2k; (l) JPEGtrans; (m) JPEG2ktrans; (n) NEPN; (o) LBWD; (p) MS; (q) CC; (r) CCS; (s) MGN; (t) CN; (u) LCN; (v) CQWD; (w) CA; (x) SSR

    Figure 10.  Scatter plots of the IQA results of 24 kinds of distorted images in TID2013 database evaluating by the proposed IQA model: (a) AGN; (b) NCC; (c) SCN; (d) MN; (e) HFN; (f) IN; (g) QN; (h) GB; (i) ID; (j) JPEG; (k) JPEG2k; (l) JPEGtrans; (m) JPEG2ktrans; (n) NEPN; (o) LBWD; (p) MS; (q) CC; (r) CCS; (s) MGN; (t) CN; (u) LCN; (v) CQWD; (w) CA; (x) SSR.

    图 8  所提IQA模型对LIVE库中5种失真类型的失真图像评价结果的散点图 (a) jpeg2k; (b) jpeg; (c) WN; (d) gblur; (e) fastfading

    Figure 8.  Scatter plots of the IQA results of 5 kinds of distorted images in LIVE database evaluating by the proposed IQA model: (a) jpeg2k; (b) jpeg; (c) WN; (d) gblur; (e) fastfading.

    图 9  所提IQA模型对TID2008库中17种失真类型的失真图像评价结果的散点图 (a) AGN; (b) ANCC; (c) SCN; (d) MN; (e) HFN; (f) IN; (g) QN; (h) GB; (i) ID; (j) JPEG; (k) JPEG2k; (l) JPEGtrans; (m) JPEG2ktrans; (n) NEPN; (o) LBWD; (p) MS; (q) CC

    Figure 9.  Scatter plots of the IQA results of 17 kinds of distorted images in TID2008 database evaluating by the proposed IQA model: (a) AGN; (b) ANCC; (c) SCN; (d) MN; (e) HFN; (f) IN; (g) QN; (h) GB; (i) ID; (j) JPEG; (k) JPEG2k; (l) JPEGtrans; (m) JPEG2ktrans; (n) NEPN; (o) LBWD; (p) MS; (q) CC.

    表 1  4个数据库中的图像主客观IQA分数之间的相关性参数计算结果

    Table 1.  Calculated 4 correlation parameters between the subjective and objective IQA scores of images in 4 databases.

    数据库LIVE(779)CSIQ(866)TID2008(1700)TID2013(3000)加权
    PLCC0.96220.95860.87780.86160.8915
    SROCC0.96600.95690.88310.84520.8854
    RMSE7.43970.07470.64270.6293
    OR0.15310.26900.12870.1198
    DownLoad: CSV

    表 2  基于CSIQ, LIVE和TID2013数据库中的图像IQA结果比较所提模型与现有7个模型的精度

    Table 2.  Comparing the accuracy of the proposed model with those of the existing 7 models based on the IQA results in CSIQ, LIVE, and TID2013 databases.

    数据库参数PSNRVSNRSSIMFSIMcVSIGMSDMADMPCC
    CSIQPLCC0.80000.80020.86130.91920.92790.95410.95020.9587
    SROCC0.80580.81060.87560.93100.94230.95700.94660.9569
    RMSE0.15750.15750.13340.10340.09790.07860.08180.0748
    OR0.42200.38320.35350.30410.28730.27420.28290.2738
    LIVEPLCC0.87230.92310.94490.96130.94820.96030.96750.9620
    SROCC0.87560.92740.94790.96450.95240.96030.96690.9660
    RMSE13.359710.50598.94557.52968.68167.62146.90737.4598
    OR0.21790.21510.18650.16270.18530.16430.15290.1606
    TID2013PLCC0.70620.74020.78950.87690.90000.85530.82670.8648
    SROCC0.69170.73160.74170.85100.89650.80440.78070.8452
    RMSE0.88870.83920.76080.59590.54040.64230.69750.6224
    OR0.16360.15520.14270.11320.10450.12420.13230.1179
    DownLoad: CSV

    表 3  基于TID2013库中24类失真图像评价结果的PLCC值以8个IQA模型的精度对比

    Table 3.  Accuracy comparisons among 8 IQA metrics based on PLCC of IQA results from 24 types of distortion images in TID2013 database.

    失真类别PSNRVSNRSSIMFSIMcVSIGMSDMADMPCC
    1 Additive Gaussian noise(AGN)0.95520.83190.86850.91520.95270.95030.88970.8706
    2 Noise in color comp. (NCC)0.92560.78140.80500.88730.91720.91180.84380.8324
    3 Spatially correl. noise (SCN)0.95250.81050.86210.89890.94720.93910.90080.7457
    4 Masked noise (MN)0.87070.77150.82190.84920.82030.75470.80090.6943
    5 High frequency noise (HFN)0.97310.90610.90810.94750.96550.95670.92330.9090
    6 Impulse noise (IN)0.88870.74420.74150.81710.86350.75720.32060.7408
    7 Quantization noise (QN)0.88800.83840.87020.87940.87470.91100.85710.8122
    8 Gaussian blur (GB)0.91690.94370.96340.95440.95510.90990.93570.9252
    9 Image denoising (ID)0.96400.94630.95890.96520.97070.97590.96450.9594
    10 JPEG compression (JPEG)0.91670.93860.95510.97540.98580.98430.96380.9509
    11 JPEG2000 compression (JPEG2 K)0.91700.95130.96580.97540.98450.98120.97400.9452
    12 JPEG transm. errors (JPEG trans.)0.81040.85970.91810.91760.94570.90790.90010.8805
    13 JPEG2000 transm. errors (JPEG2K trans)0.90020.84350.88010.89290.91920.90850.88380.8699
    14 Non ecc. patt. noise (NEPN)0.67460.67740.77730.80680.81620.81330.86080.8132
    15 Local block-wise dist. (LBWD)0.24100.36320.60220.55420.49840.65200.41870.6845
    16 Mean shift (MS)0.80560.51600.80190.78690.80210.77070.69340.7720
    17 Contrast change (CC)0.58110.42510.60260.72660.69740.71110.31990.8108
    18 Change of color saturation (CSS)0.32940.41840.45900.82280.80520.42340.28460.7583
    19 Multipl. Gauss. noise (MGN)0.92040.77300.78960.86600.91360.89110.85290.8759
    20 Comfort noise (CN)0.87020.90160.90220.94630.95460.95620.94440.8476
    21 Lossy compr. of noisy (LCN)0.94290.89600.91740.95640.96360.97030.95620.7889
    22 Image color quant. w. dither (CQWD)0.93080.87730.86190.89110.89630.91920.87790.8721
    23 Chromatic aberrations (CA)0.95560.95920.97700.97940.97480.97370.96960.9473
    24 Sparse sampl. and reconstr. (SSR)0.92960.94770.96670.97760.98080.98490.97660.9349
    Max0.97310.95920.97700.97940.98580.98490.97660.9594
    Min0.24100.36320.45900.55420.49840.42340.28460.6845
    波动范围宽度0.73210.59590.51810.42520.48730.56140.69200.2750
    所有整体精度0.70620.74020.78950.87690.90000.85530.82670.8648
    DownLoad: CSV
    Baidu
  • [1]

    Nightingale J, Salva P, Alcarazcalero J M, Wang Q 2018 IEEE Trans. Broadcast. 64 621Google Scholar

    [2]

    丰卉, 孙彪, 马书根 2017 66 180202Google Scholar

    Feng H, Sun B, Ma S G 2017 Acta Phys. Sin. 66 180202Google Scholar

    [3]

    Yao J C, Liu G Z 2019 IEEE Trans. Broadcast. 65 546Google Scholar

    [4]

    Chandler D M, Hemami S S 2007 IEEE Trans. Image Process. 16 2284Google Scholar

    [5]

    Wang Z, Bovik A C, Sheikh H R, Simoncelli E P 2004 IEEE Trans. Image Process. 13 600

    [6]

    Zhang L, Zhang L, Mou X, Zhang D 2011 IEEE Trans. Image Process. 20 2378Google Scholar

    [7]

    Xue W, Zhang L, Mou X, Bovik A C 2014 IEEE Trans. Image Process. 23 684Google Scholar

    [8]

    Zhang L, Shen Y, Li H 2014 IEEE Trans. Image Process. 23 4270Google Scholar

    [9]

    Larson E C, Chandler D M 2010 J. Electron. Imaging 19 011006Google Scholar

    [10]

    Fang Y M, Yan J B, Li L D, Wu J J, Lin W S 2018 IEEE Trans. Image Process. 27 1600Google Scholar

    [11]

    方志明, 崔荣一, 金璟璇 2017 66 109501Google Scholar

    Fang Z M, Cui R Y, Jin J X 2017 Acta Phys. Sin. 66 109501Google Scholar

    [12]

    Qi H, Jiao S H, Lin W S, Tang L, Shen W H 2014 Electron. Lett. 50 1435

    [13]

    Zheng L, Shen L, Chen J, An P, Luo J 2019 IEEE Trans. Multimedia 21 2057Google Scholar

    [14]

    Yang X, Wang T, Ji G 2020 IET Image Proc. 14 384Google Scholar

    [15]

    Ahar A, Barri A, Schelkens P 2018 IEEE Trans. Image Process. 27 879Google Scholar

    [16]

    Zhou W J, Yu L, Zhou Y, Qiu W W, Wu M W 2018 IEEE Trans. Image Process. 27 2086

    [17]

    Yao J C, Liu G Z 2018 IET Image Proc. 12 872Google Scholar

    [18]

    Wang X, Meng F, Huang X Y 2018 Proceeding of the 11 th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) Beijing, China, October 13—15, 2018 p1

    [19]

    Ginesu G, Massidda F, Giusto D D 2006 Signal Process. Image Commun. 21 316Google Scholar

    [20]

    Nadenau M 2000 Ph. D Dissertation (Lausanne: École Polytechnique Fédérale de Lausanne)

    [21]

    Niu Y Z, Zhang H F, Guo W Z, Ji R R 2018 IEEE Trans. Circuits Syst. Video Technol. 28 849

    [22]

    王鸿南, 钟文, 汪静, 夏德深 2004 中国图象图形学报 9 828Google Scholar

    Wang H N, Zhong W, Wang J, Xia D S 2004 J. Image Graph. 9 828Google Scholar

    [23]

    Sheikh H R, Wang Z, Cormack L LIVE Image Quality Assessment Database Release 2 Available: http://live.ece. utexas.edu/research/quality [2019-12-20]

    [24]

    Larson E C, Chandler D M The CSIQ image database http://vision.okstate.edu/?loc=csiq [2019-12-20]

    [25]

    Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F Tampere Image Database 2008 TID2008, version 1.0 http://www.ponomarenko.info/tid2008.htm [2019-12-20]

    [26]

    Ponomarenko N, Jin L, Ieremeiev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chehdi K, Carli M, Battisti F, Kuo C C J 2015 Signal Process. Image Commun. 30 57

    [27]

    Athar S, Wang Z 2019 IEEE Access 7 140030Google Scholar

    [28]

    Callet L, Patrick A F Subjective quality assessment IRCCyN /IVC database http://www2.irccyn.ec-nantes.fr/ivcdb/ [2019-12-20]

    [29]

    Yi Z, Chandler D M 2018 IEEE Trans. Image Process. 27 5433

    [30]

    Dai T, Gu K, Niu L, et al. 2018 Neurocomputing 290 185

    [31]

    Zhang C, Cheng W, Hirakawa K 2019 IEEE Trans. Image Process. 28 1732

  • [1] Huo Yong-Gang, Yan Jiang-Yu, Zhang Quan-Hu. Image quality evaluation of multimodal imaging of muon. Acta Physica Sinica, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] Image Quality Evaluation of Multi-modal Imaging of Muon. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211083
    [3] Shi Chen-Yang, Lin Yan-Dan. Objective image quality assessment based on image color appearance and gradient features. Acta Physica Sinica, 2020, 69(22): 228701. doi: 10.7498/aps.69.20200753
    [4] Zhou Bo-Rui, Tan Yi-Dong, Shen Xue-Ju, Zhu Kai-Yi, Bao Li-Ping. Mechanism of contrast-enhancement in ultrasound-modulated laser feedback imaging with ultrasonicmicrobubble contrast agent. Acta Physica Sinica, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [5] Wu Yuan-Qing, Wang Yang, Zhang Yan-Tao, Zhang Yu-Feng, Liu Chun-Mei. Effect of contrast threshold function correction on NVThermIP model. Acta Physica Sinica, 2018, 67(21): 210702. doi: 10.7498/aps.67.20180493
    [6] Fan Qi-Meng, Yin Cheng-You. Super-resolution imaging of high-contrast target in elctromagnetic inverse scattering. Acta Physica Sinica, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [7] Yao Jun-Cai, Liu Gui-Zhong. Objective assessment method of image quality based on visual perception of image content. Acta Physica Sinica, 2018, 67(10): 108702. doi: 10.7498/aps.67.20180168
    [8] Zhou Li-Ping, Li Pei, Pan Cong, Guo Li, Ding Zhi-Hua, Li Peng. System of label-free three-dimensional optical coherence tomography angiography with high sensitivity and motion contrast and its applications in brain science. Acta Physica Sinica, 2016, 65(15): 154201. doi: 10.7498/aps.65.154201
    [9] Tian Heng, Zhu Jing-Ping, Zhang Yun-Yao, Guan Jin-Ge, Hou Xun. Image contrast for different imaging methods in turbid media. Acta Physica Sinica, 2016, 65(8): 084201. doi: 10.7498/aps.65.084201
    [10] Hou Wang, Mei Feng-Hua, Cheng Guo-Jun, Deng Xi-Wen. An evaluation criterion of infrared image complexity based on background optimal filter scale. Acta Physica Sinica, 2015, 64(23): 234202. doi: 10.7498/aps.64.234202
    [11] Lu Chang-Bing, Xu Peng, Bao Jie, Wang Zhao-Hui, Zhang Kai, Ren Jie, Liu Yan-Feng. Simulation analysis and experimental verification of fast neutron radiography. Acta Physica Sinica, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [12] Zheng Chi-Chao, Peng Hu, Han Zhi-Hui. Medical ultrasound imaging based on cross-correlation adaptive weighting. Acta Physica Sinica, 2014, 63(14): 148702. doi: 10.7498/aps.63.148702
    [13] Song Hong-Sheng, Zhuang Qiao, Liu Gui-Yuan, Qin Xi-Feng, Cheng Chuan-Fu. Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region. Acta Physica Sinica, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [14] Ma Yuan, Lü Qun-Bo, Liu Yang-Yang, Qian Lu-Lu, Pei Lin-Lin. Image sparsity evaluation based on principle component analysis. Acta Physica Sinica, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [15] Liu Xue-Feng, Yao Xu-Ri, Li Ming-Fei, Yu Wen-Kai, Chen Xi-Hao, Sun Zhi-Bin, Wu Ling-An, Zhai Guang-Jie. The role of intensity fluctuations in thermal ghost imaging. Acta Physica Sinica, 2013, 62(18): 184205. doi: 10.7498/aps.62.184205
    [16] Chang Hong, Yang Fu-Gui, Dong Lei, Wang An-Ting, Xie Jian-Ping, Ming Hai. Effect of structure and size of laser spot on speckle contrast in laser scanning display. Acta Physica Sinica, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [17] Yi Xu-Nong, Hu Wei, Luo Hai-Lu, Zhu Jing. Study of small-scale self-focusing in laser beams by high-order contrast. Acta Physica Sinica, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [18] Song Hong-Sheng, Cheng Chuan-Fu, Zhang Ning-Yu, Ren Xiao-Rong, Teng Shu-Yun, Xu Zhi-Zhan. Study on the dependence of the contrast of image speckles produced by strong scattering-object on random surface and imaging system. Acta Physica Sinica, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [19] Zhang Bin, Liu Yan-Jun, Xu Ke-Shu. Electro-optical properties of holographic polymer dispersed liquid crystal devices. Acta Physica Sinica, 2004, 53(6): 1850-1855. doi: 10.7498/aps.53.1850
    [20] Liang Yan-Mei, Zhai Hong-Chen, Chang Sheng-Jiang, Zhang Si-Yuan. Color image segmentation based on the principle of maximum degree of membership. Acta Physica Sinica, 2003, 52(11): 2655-2659. doi: 10.7498/aps.52.2655
Metrics
  • Abstract views:  9968
  • PDF Downloads:  165
  • Cited By: 0
Publishing process
  • Received Date:  04 March 2020
  • Accepted Date:  27 April 2020
  • Available Online:  08 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回
Baidu
map