-
精确测量视网膜血氧饱和度(oxygen saturation,简记为SO2)可为糖尿病视网膜病变、青光眼及视网膜静脉阻塞等眼部疾病提供有价值的早期指示。虽然可见光光学相干层析成像能够通过光谱拟合直接获取SO2,但受限于可见光的刺激性及其对视网膜生理状态的影响。近红外一区对眼部的刺激较小,尽管血红蛋白在此波段的吸收效应较弱,但其散射特性也与SO2相关。基于此,本研究提出了一种光学相干血流造影(opticalcoherence tomography angiography,简记为OCTA)引导的近红外一区视网膜血氧饱和度测量技术,利用氧敏感波长(855nm)与氧等消光波长(805nm)光衰减的比值结合标定实现了SO2的测量。该方法利用OCTA生成的三维血流图自动识别血管以及周围组织区域的三维位置,避免了手动选取区域引起的测量误差,将视网膜动静脉分类的平均准确率由82.1%提高到96.7%。测量结果显示,动脉和静脉的平均血氧饱和度分别为94%±21%,56%±13%,符合正常视网膜血氧饱和度范围。该方法有效提升了测量的准确性和效率,为眼科疾病的早期诊断、病情评估及疗效监测提供了可靠的工具,具有广阔的应用前景。Accurate measurement of retinal blood oxygen saturation (SO2) offers valuable early insights into the pathophysiology of ocular diseases like diabetic retinopathy, glaucoma, and retinal vein occlusion. Visible-light optical coherence tomography (OCT) can measure SO2 directly through spectral fitting, yet its application is restricted due to the irritative nature of visible light and its influence on retinal physiological states. Near-infrared band 1 (NIR-I) causes less ocular stimulation. Even though the hemoglobin absorption effects are weaker in this region, its scattering properties are also related to SO2. Based on this principle, we propose a novel optical coherence tomography (OCTA) guided NIR-I technique for retinal blood oxygen saturation measurement. This method calculates SO2 by calibrating the optical density ratio (ODR) of oxygen-sensitive (855 nm) and isosbestic (805 nm) wavelengths. By leveraging the 3D blood flow maps generated by OCTA, the technique can automatically identify retinal vessels and surrounding tissue regions, thus minimizing errors caused by manual selection. Consequently, the classification accuracy of arteries and veins has surged from 82.1% to 96.7%. The calibrated average retinal blood oxygen saturation was 94%±21% for arteries and 56%±13% for veins, which aligns with normal physiological ranges. The representative result of artery-vein classification is presented in the figure below. This method greatly improves the accuracy and efficiency of measurement. It provides a reliable tool for the early diagnosis, disease evaluation, and treatment monitoring of ophthalmic diseases, holding great promise for future applications.
-
Keywords:
- optical coherence tomography angiography /
- optical coherence tomography /
- blood oxygen saturation /
- optical density
-
[1] Hammer M, Vilser W, Riemer T, Mandecka A, Schweitzer D, Kühn U, Dawczynski J, Liemt F, Strobel J 2009 Graefes. Arch. Clin. Exp. Ophthalmol. 247 1025
[2] Hardarson S H, Stefánsson E 2012 Br. J. Ophthalmol. 96 560
[3] Olafsdottir O B, Hardarson S H, Gottfredsdottir M S, Harris A, Stefánsson E 2011 Invest. Ophthalmol. Vis. Sci. 52 6409
[4] Hardarson S H, Gottfredsdottir M S, Halldorsson G H, Karlsson R A, Benediktsson J A, Eysteinsson T, Beach J M, Harris A, Stefansson E 2009 Invest. Ophthalmol. Vis. Sci. 50 5247
[5] Hardarson S H, Stefánsson E 2012 Acta Ophthalmol. 90 466
[6] Hardarson S H, Stefánsson E 2010 Am. J. of Ophthalmol. 150 871
[7] Eliasdottir T S 2018 Acta Ophthalmol. 96 1
[8] Garg A K, Knight D, Lando L, Chao D L 2021 Transl. Vis. Sci. Technol. 10 5
[9] Gao C M, Xian Y L, Dai Y 2017 Laser Optoelectronics Progress 54 45 (in Chinese) [高椿明, 先永利,戴云 2017 激光与光电子学进展 54 45]
[10] Yi J, Wei Q, Liu W Z, Backman V, Zhang H F 2013 Opt. Lett. 38 1796
[11] Chen S Y, Shu X, Nesper P L, Liu W Z, Fawzi A A, Zhang H F 2017 Biomed. Opt. Express 8 1415
[12] Pi S H, Camino A, Cepurna W, Wei X, Zhang M, Huang D, Morrison J, Jia Y L 2018 Biomed. Opt. Express 9 2056
[13] Liu K Y, Zhu T P, Gao M Q, Yin X T, Zheng R, Yan Y, Gao L, Ding Z H, Ye J, Li P 2023 Biomed. Opt. Express 14 1670
[14] Faber D J, Aalders M C G, Mik E G, Hooper B A, van Gemert M J C, van Leeuwen T G 2004 Phys. Rev. Lett. 93 028102
[15] Kagemann L, Wollstein G, Wojtkowski M, Ishikawa H, Townsend K A, Gabriele M L, Srinivasan V J, Fujimoto J G, Schuman J S 2007 J. Biomed. Opt. 12 041212
[16] Ye Y F, Jiang H, Shen M X, Lam B L, Debuc D C, Ge L L, Sehi M, Wang J H 2012 Clin. Ophthalmol. 6 2085
[17] Son T, Alam M, Kim T H, Liu C G, Toslak D, Yao X C 2019 Exp. Biol. Med. 244 813
[18] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178
[19] Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174202(in Chinese)[唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 64 174202]
[20] Deng X F, Liu K Y, Zhu T P, Guo D Y, Yin X T, Yao L, Ding Z H, Ye J, Li P 2022 Biomed. Opt. Express 13 3615
[21] Huang L Z, Fu Y M, Chen R X, Yang S S, Qiu H X, Wu X N, Zhao S Y, Gu Y, Li P 2019 IEEE Trans. Med. Imaging 38 2695
[22] Li H K, Liu K Y, Yao L, Deng X F, Zhang Z Y, Li P 2021 J. Innov. Opt. Health. Sci. 14 2130001
[23] Zhang Y M, Li H K, Cao T T, Chen R X, Qiu H X, Gu Y, Li P 2021 Quant. Imaging Med. Surg. 11 895
[24] Bosschaart N, Edelman G J, Aalders M C G, van Leeuwen T G, Faber D J 2014 Lasers Med. Sci. 29 453
[25] Hardarson S H, Harris A, Karlsson R A, Halldorsson G H, Kagemann L, Rechtman E, Zoega G M, Eysteinsson T, Benediktsson J A, Thorsteinsson A, Jensen P K, Beach J, Stefánsson E 2006 Invest. Ophthalmol. Vis. Sci. 47 5011
[26] Delori F C 1988 Appl. Optics 27 1113
计量
- 文章访问数: 61
- PDF下载量: 1
- 被引次数: 0