-
The clustering phenomenon on the solid wall during dropwise condensation is analyzed with reflection spectrum. By the theoretical prediction of reflectivity of thin liquid films with different thicknesses on the stainless steel surface, it is ascertained that the reflectivity value is corresponding to the coacervate character of the steam molecular. Furthermore, by analyzing the experimental data of the reflection spectrum during dropwise condensation, presented in the literature, it is obtained that the reflection character and so the coacervate character lies between liquid and steam after the droplet has fallen off during an actual continuous condensation process. And the clustering model is used to analyze the results, which point out that clusters are formed on the blank surface. And it is found that the different microstructures of the solid wall can lead to different deposition rates of the clusters, which presents an effective way to enhance the heat transfer process of condensation by guickening the deposition rate of clusters with the surface modification.
-
Keywords:
- molecular cluster /
- reflection spectrum /
- dropwise condensation
[1] Jakob M 1936 Mech. Eng. 58 729
[2] [3] Tammann G, Boehme W 1935 Ann. Phys. 5 77
[4] Utaka Y, Terachi N 1995 Heat Trans. Jpn. Res. 24 57
[5] [6] [7] Liu T Q, Mu C F, Sun X Y, Xia S B 2007 Am. Inst. Chem. Eng. 53 1050
[8] Song T Y, Lan Z, Ma X H, Bai T 2009 Int. J. Therm. Sci. 48 2228
[9] [10] Lan Z, Wang A L, Ma X H, Peng B L, Song T Y 2010 Acta Phys. Sin. 59 6014 (in Chinese) [兰 忠、王爱丽、马学虎、彭本利、宋天一 2010 59 6014]
[11] [12] Manas O, Arya C, Frank M, Schubert E F, Peter C W Jr, Joel L P 2010 Int. J. Heat Mass Trans. 53 910
[13] [14] [15] Song Y J, Xu D Q, Lin J F, Qian S X 1991 Int. J. Heat Mass Trans. 34 2827
[16] [17] Tang J F, Zheng Q 1984 Thin Film Optics Application (Shanghai: Shanghai Science and Technology Press) pp57-59 (in Chinese)[唐晋发、郑 权 1984 应用薄膜光学(上海:上海科学技术出版社)第57-59页]
[18] [19] Varanasi K K, Hsu M, Bhate N, Yang W, Deng T 2009 Appl. Phys. Lett. 95 094101
[20] [21] Talanquer V, Oxtoby D W 1995 Physica A 220 74
[22] Graham C, Griffith P 1973 Int. J. Heat Mass Trans. 16 337
[23] [24] [25] Mousa A O 1998 Int. J. Heat Mass Trans. 41 81
-
[1] Jakob M 1936 Mech. Eng. 58 729
[2] [3] Tammann G, Boehme W 1935 Ann. Phys. 5 77
[4] Utaka Y, Terachi N 1995 Heat Trans. Jpn. Res. 24 57
[5] [6] [7] Liu T Q, Mu C F, Sun X Y, Xia S B 2007 Am. Inst. Chem. Eng. 53 1050
[8] Song T Y, Lan Z, Ma X H, Bai T 2009 Int. J. Therm. Sci. 48 2228
[9] [10] Lan Z, Wang A L, Ma X H, Peng B L, Song T Y 2010 Acta Phys. Sin. 59 6014 (in Chinese) [兰 忠、王爱丽、马学虎、彭本利、宋天一 2010 59 6014]
[11] [12] Manas O, Arya C, Frank M, Schubert E F, Peter C W Jr, Joel L P 2010 Int. J. Heat Mass Trans. 53 910
[13] [14] [15] Song Y J, Xu D Q, Lin J F, Qian S X 1991 Int. J. Heat Mass Trans. 34 2827
[16] [17] Tang J F, Zheng Q 1984 Thin Film Optics Application (Shanghai: Shanghai Science and Technology Press) pp57-59 (in Chinese)[唐晋发、郑 权 1984 应用薄膜光学(上海:上海科学技术出版社)第57-59页]
[18] [19] Varanasi K K, Hsu M, Bhate N, Yang W, Deng T 2009 Appl. Phys. Lett. 95 094101
[20] [21] Talanquer V, Oxtoby D W 1995 Physica A 220 74
[22] Graham C, Griffith P 1973 Int. J. Heat Mass Trans. 16 337
[23] [24] [25] Mousa A O 1998 Int. J. Heat Mass Trans. 41 81
Catalog
Metrics
- Abstract views: 6774
- PDF Downloads: 567
- Cited By: 0