-
通过固相反应法,在1100 ℃下成功制备出了系列Ga掺杂Sc2-xGaxW3O12(x=0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8)固溶体.X射线粉末衍射结构精修表明,Ga以替代Sc的形式成功进入Sc2-xGaxW3O12晶格,但不能获得端元组分Ga2W3
-
关键词:
- 负热膨胀 /
- 热膨胀系数 /
- Rietveld结构精修
Series of Ga-doped Sc2-xGaxW3O12 samples (x=0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8) were synthesized by solid state reaction at 1100 ℃. Rietveld refinement of the X-ray powder diffraction patterns show that Ga substituted Sc in Sc2-xGaxW3O12 structure successfully. The client component Ga2W3O12 cannot be obtained in this work. The lattice parameters obtained by Rietveld refinement showed that all samples have negative thermal expansion between 25—1000 ℃. Lattice parameters a, c and cell volume of the Sc2-xGaxW3O12 decrease with the increases of Gallium content, but accompanied with the expansion of lattice parameter b. The average volume expansion coefficient also decreases with the increase of the Gallium content. As the temperature increases, the absolute value of the volume expansion coefficients decrease dramatically between room temperature and 300 ℃, but remain almost unchanged between 300 and 800 ℃, and decrease further at the temperature higher than 800 ℃, tending to zero and turning into positive expansion.[1] [1]Sleight A W, Mary T A, Evans U S A, patent 5514360 [1995]
[2] [2]Korthuis V, Khosrovani N, Sleight A W 1998 Chem. Mate. 7 412
[3] [3]Li J, Sleight A W, Jones C Y, Toby B H 2005 J. Solid State Chem. 178 285
[4] [4]Ahemd S I, Dalba G, Fornasini, Vaccari M 2009 Phys. Rev. B 79 104302
[5] [5]Mary T A, Sleight A W 1999 J. Mater. Res. 14 912
[6] [6]Hao Y M, Zhao M, Zhou Y 2005 Acta Phys. Sin. 54 2334 (in Chinese) [郝延明、 赵淼、 周严 2005 54 2334]
[7] [7]Cui C X,Hao Y M, Meng F B 2003 Acta Phys. Sin. 52 999 [崔春翔、 郝延明、 孟凡斌 2003 52 999]
[8] [8]Evans J S O, Mary T A , Sleight A W 1998 J. Solid State Chem.137 148
[9] [9]Forster P M, Yokochi A, Sleight A W 1998 J. Solid State Chem. 140 157
[10] ]Xiao X L, Cheng Y Z, Peng J, Wu M M, Chen D F, Hu Z B, Kiyanagi R, Fieramosca J S, Short S, Jorgensen 2008 Solid State Sci.10 321
[11] ]Wu M M, Peng J, Cheng Y Z, Wang H, Yu Z X, Chen D F, Hu Z B 2006 Solid State Sci. 8 665
[12] ]Wu M M, Cheng Y Z, Peng J, Xiao X L, Chen D F, Kiyanagi R, Fieramosca J S, Short S, Jorgensen J, Hu Z B 2007 Mater. Res. Bull. 42 2090
[13] ]Wu M M, Peng J, Cheng Y Z, Xiao X L, Hao Y M, Hu Z B 2007 Mater. Sci. Engin. B 137 144
[14] ]Yu Z X, Peng J, Wang H, Wu M M, Cheng Y Z, Hu Z B, Chen D F 2008 Sci. China Ser. E 51 25
[15] ]Wu M M, Xiao X L, Hu Z B, Liu Y T, Chen D F 2009 Solid State Sci. 11 325
[16] ]Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
[1] [1]Sleight A W, Mary T A, Evans U S A, patent 5514360 [1995]
[2] [2]Korthuis V, Khosrovani N, Sleight A W 1998 Chem. Mate. 7 412
[3] [3]Li J, Sleight A W, Jones C Y, Toby B H 2005 J. Solid State Chem. 178 285
[4] [4]Ahemd S I, Dalba G, Fornasini, Vaccari M 2009 Phys. Rev. B 79 104302
[5] [5]Mary T A, Sleight A W 1999 J. Mater. Res. 14 912
[6] [6]Hao Y M, Zhao M, Zhou Y 2005 Acta Phys. Sin. 54 2334 (in Chinese) [郝延明、 赵淼、 周严 2005 54 2334]
[7] [7]Cui C X,Hao Y M, Meng F B 2003 Acta Phys. Sin. 52 999 [崔春翔、 郝延明、 孟凡斌 2003 52 999]
[8] [8]Evans J S O, Mary T A , Sleight A W 1998 J. Solid State Chem.137 148
[9] [9]Forster P M, Yokochi A, Sleight A W 1998 J. Solid State Chem. 140 157
[10] ]Xiao X L, Cheng Y Z, Peng J, Wu M M, Chen D F, Hu Z B, Kiyanagi R, Fieramosca J S, Short S, Jorgensen 2008 Solid State Sci.10 321
[11] ]Wu M M, Peng J, Cheng Y Z, Wang H, Yu Z X, Chen D F, Hu Z B 2006 Solid State Sci. 8 665
[12] ]Wu M M, Cheng Y Z, Peng J, Xiao X L, Chen D F, Kiyanagi R, Fieramosca J S, Short S, Jorgensen J, Hu Z B 2007 Mater. Res. Bull. 42 2090
[13] ]Wu M M, Peng J, Cheng Y Z, Xiao X L, Hao Y M, Hu Z B 2007 Mater. Sci. Engin. B 137 144
[14] ]Yu Z X, Peng J, Wang H, Wu M M, Cheng Y Z, Hu Z B, Chen D F 2008 Sci. China Ser. E 51 25
[15] ]Wu M M, Xiao X L, Hu Z B, Liu Y T, Chen D F 2009 Solid State Sci. 11 325
[16] ]Evans J S O, Mary T A, Sleight A W 1997 J. Solid State Chem. 133 580
计量
- 文章访问数: 8357
- PDF下载量: 695
- 被引次数: 0