-
研究了阴离子和阳离子混合型碘系钙钛矿薄膜材料的结构、光学性质及光致发光温度特性. 研究发现, 阴离子混合型碘系钙钛矿(MAPb(BrxI1–x)3, MA+ =
$ {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{NH}}_3^ + $ )随着半径较小的Br–离子的比例增加(x = 0—0.1), 薄膜择优取向生长更明显, 其光学带隙从1.43 eV到1.48 eV线性增加. 在光抽运下, 随着工作温度从10 K升高到125 K, 纯碘系钙钛矿(MAPbI3, 即x = 0)可见区光致发光(PL)的峰位轻微的红移; 之后至350 K, 发生蓝移. 而Br–阴离子混合型钙钛矿薄膜的PL峰位只随温度升高持续蓝移. 并且在不同工作温度下, Br–阴离子比例x与PL峰位呈现线性关系. 对于纯碘系钙钛矿, 其高温段激子结合能是37.5 meV; 随着Br–的比例的增加, 高温段激子结合能会先增大后减小. 当x = 0.0333, 其薄膜PL半高宽随温度升高展宽幅度最小, 具有更好的温度稳定性. 通过进一步三重阳离子混合和阴离子调节, 获得更加优良的混合型碘系钙钛矿((Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3, FA+ =$ {\rm{HC}}({\rm{N}}{{\rm{H}}_2})_2^ +$ )薄膜, 为进一步研制太阳能电池和发光器件奠定了实验基础.Lead halide perovskite has attracted much attention due to its high absorption coefficient, long carrier diffusion length, low binding energy, and low cost. The stability of intrinsic crystal structure in I-based perovskite can be theoretically estimated by calculating cubic structures factor and octahedral factor. Experimental methods to solve the stability of structure in I-based perovskite could be mainly to either incorporate anions (e.g. Cl–, Br–) or mix cations (e.g. Cs+) into I-based perovskite matrix. Moreover, incorporating Br– into I-based perovskite leads its band gap to widen, which might be used as a top-cell material to tandem solar cell. However, in order to understand photo-physics process of anion-mixed and/or cation-mixed perovskites, it is essential to further investigate the optical properties such as absorption spectrum, photoluminescence (PL), temperature-dependent PL (TPL) behavior, etc. In this work, anion-mixed and/or cation-mixed perovskite thin films with high quality crystallization and (110) prereferral orientation are synthesized by one-step solution method. All mixed perovskite films are characterized by using X-ray diffraction (Rigaku D MAX-3C, Cu-Kα, λ = 1.54050 Å) and X-ray photoelectron spectroscopy (XPS) (Thermo Scientific Escalab 250Xi). A set of strong peaks of the mixed perovskite films at 14.12° and 28.48°, is assigned to (110) and (220) lattice plane of orthorhombic crystal structure of I-based perovskite, due to preferred orientation. The Pb 4f and I 3d doublet peaks, corresponding to Pb+2 and I– states, are observed in XPS spectra. It should be noted that in the absence of other valence states of Pb and I component at lower/upper binding energy, the chemical element composition ratio of Pb+2 and I– are close to stoichiometric proportion. For optical absorptionspectra, the optical bandgaps of the perovskite films increase with doping concentration of Br– increasing. For TPL, the perovskite films with x = 0 and x = 0.05 show abnormal red-shifts in a temperature range from 10 to 100 K. The following blue shifts in a temperature range from 125 to 350 K emerge, which is mainly attributed to band gap widening. However, incorporating more Br– into I-based perovskite leads the TPL spectra to monotonically blue-shift. A linear relationship between the TPL peak position and the doping concentration of Br– ions is observed at the same temperatures. This indicates that the Br– anion in I-based perovskite plays a crucial role in determining the optical properties. The low-temperature and high-temperature (HT) excitonic binding energy at x = 0 are 186 meV and 37.5 meV, respectively. The HT excitonic binding energy first increases and then decreases with the Br– concentration in I-based perovskite film increasing. The minimal variation of TPL peak position and FWHM (full width at half maximum) at x = 0.0333 are 13 nm and (25.8 ± 0.5) meV, respectively, suggesting higher temperature stability in optical property. This should contribute to understanding the relationship between temperature-dependent electrical and optoelectronic performance for hybrid mixed perovskite materials and devices.-
Keywords:
- hybrid mixed perovskite /
- temperature-dependent photoluminescence /
- optical properties /
- excitonic binding energy
[1] Robert S F 2014 Science 344 458Google Scholar
[2] Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar
[3] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[4] Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar
[5] Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736
[6] Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[7] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[8] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar
[9] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[10] Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar
[11] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar
[12] Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar
[13] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[14] Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar
[15] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar
[16] Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar
[17] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar
[18] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar
[19] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[20] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar
[21] Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185
[22] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar
[23] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar
[24] Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar
[25] Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar
[26] Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar
[27] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[28] Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar
[29] Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar
[30] 刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页
Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310
[31] Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar
[32] Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29
[33] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar
[34] Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar
[35] ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar
[36] Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar
[37] Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar
[38] Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar
-
图 1 (a) 阴离子混合型钙钛矿MAPb(BrxI1–x)3的XRD谱; (b) (110)和(220)衍射峰强和晶面间距d随Br–比例x的变化; (c) 不同Br–比例的钙钛矿薄膜中Pb和I元素XPS谱
Fig. 1. (a) The XRD of hybrid anion mixed perovskite MAPb(BrxI1–x)3; (b) the diffraction intensity and plane distance obtained at different molar ratios of Br– in lattice plane of (110) and (220); (c) the XPS spectra of Pb and I element inperovskite film for different Br– ratios.
图 2 室温下的阴离子混合型钙钛矿
$MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ (a)吸收系数与入射光子能量的关系; (b) Tauc方差分析光学带隙; (c) 由(1)式拟合带隙Eg的变化Fig. 2. Hybrid anion mixed perovskite
$MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ in room temperature: (a) Absorption coefficient change with incident photon energy; (b) the optical bandgap obtained by Tauc equation; (c) the change of Eg using Eq. (1) fitting.图 4 阴离子混合型钙钛矿MAPb(BrxI1–x)3可见波段变温PL谱 (a) PL谱; (b) PL投影图; (c)通过Arrhenius拟合提取激子结合能; (d) PL的强度、峰位和半高宽
Fig. 4. Temperature-dependent photoluminescence of hybrid anion mixed perovskites MAPb(BrxI1–x)3 in visible region: (a) The photoluminescence spectra; (b) the projection mapping of photoluminescence; (c) the excitonic binding energy extract by Arrhenius equation fitting; (d) the intensity, peak position and full width at half maximum of photoluminescence.
图 5 混合阳离子(Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 薄膜 (a) PL谱; (b)归一化变温PL投影图; (c) 可见波段发光峰位和强度随温度的变化
Fig. 5. Photoluminescence dependent-temperature of mix cation (Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 measured at temperature range from 10 K to 350 K: (a) The photoluminescence spectra; (b) the projection mapping of normalize photoluminescence; (c) the peak position and intensity evolution with temperature.
表 1 样品化学式与XPS结果对比
Table 1. Chemical formula of sample compare with XPS.
Pb/I原子比 样品化学式 XPS测得成分 26.42/73.58 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9833}}{\rm{B}}{{\rm{r}}_{0.0167}}} \right)_3}$ $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.97}}{\rm{B}}{{\rm{r}}_{0.03}}} \right)_3}$ 26.84/73.16 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9667}}{\rm{B}}{{\rm{r}}_{0.0333}}} \right)_3}$ $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9467}}{\rm{B}}{{\rm{r}}_{0.0533}}} \right)_3}$ 27/73 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9333}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$ $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9367}}{\rm{B}}{{\rm{r}}_{0.0633}}} \right)_3}$ 27.55/72.45 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9}}{\rm{B}}{{\rm{r}}_{0.1}}} \right)_3}$ $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9133}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$ -
[1] Robert S F 2014 Science 344 458Google Scholar
[2] Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar
[3] Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar
[4] Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar
[5] Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736
[6] Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar
[7] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[8] Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar
[9] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 68 158504Google Scholar
Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[10] Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar
[11] Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar
[12] Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar
[13] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar
[14] Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar
[15] Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar
[16] Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar
[17] Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar
[18] Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar
[19] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[20] Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar
[21] Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185
[22] McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar
[23] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar
[24] Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar
[25] Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar
[26] Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar
[27] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[28] Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar
[29] Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar
[30] 刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页
Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310
[31] Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar
[32] Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29
[33] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar
[34] Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar
[35] ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar
[36] Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar
[37] Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar
[38] Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar
计量
- 文章访问数: 14519
- PDF下载量: 328
- 被引次数: 0