Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research and data processing of double locked cavity ringdown absorption spectroscopy

Jia Meng Zhao Gang Hou Jia-Jia Tan Wei Qiu Xiao-Dong Ma Wei-Guang Zhang Lei Dong Lei Yin Wang-Bao Xiao Lian-Tuan Jia Suo-Tang

Citation:

Research and data processing of double locked cavity ringdown absorption spectroscopy

Jia Meng, Zhao Gang, Hou Jia-Jia, Tan Wei, Qiu Xiao-Dong, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A continuous wave cavity ringdown spectroscopy based on a double-locking loop is proposed to improve the shortcoming of low acquisition rate of concentration in traditional scheme. A small portion of laser is separated to pass through a C2H2 reference cell, used to lock the laser frequency to the 1+3 band P(9)e absorption line of C2H2 at 6534.3634 cm-1 by the 1st harmonic demodulation of the frequency modulation spectroscopy. The remaining portion is incident on a high finesses cavity to observe the ringdown events. Meanwhile, the reflected light of cavity is used to extract the error signal to lock the laser based on the PDH frequency locking technique. As a consequence, the frequency drift of the laser and the jitter of the cavity length are improved, therefore a more relatively accuracy result is expected. The laser light is dual frequency modulated by a fiber coupled electro optic modulator (FEOM)in the above system. In order to optimize, to some extent, the asymmetry of the error signal caused by the residual amplitude modulation due to the inconsistency of the laser polarization direction with the extraordinary axis of the FEOM, the demodulation phase is adjusted carefully until the error signal is smoothed up and close to symmetry. Then, the effect of locking loop is examined. The frequency of laser, based on the measurement by a wavelength meter, is more stable and the relative frequency discrimination between the laser and the longitudinal mode of cavity is about 9.8 kHz. In addition, the PDH locking, ensuring the efficient coupling of the laser with the cavity, can gain a high acquisition rate of the concentration information. In order to obtain a complete ringdown event, the frequency of square wave to the fiber coupled acoustic optical modulator (FAOM) is limited to 30 kHz with the duty cycle of 85%, which is determined by the ringdown time and re-lock time. However, there exists a relatively large random noise in a series of ringdown time measurements of empty cavity, which is mainly caused by the errors of fitting and measurement. For the further improvement of the accuracy of experiment, an efficient digital filter, Kalman filter which can suppress the noise considerably at no expense of real-time capability, is used. The standard deviation of the ringdown time is reduced from 0.00333 to 0.00153. According to Allan variance analysis, the detection limit can reach 410-9 cm-1 for a 2 s integration time. Finally, the C2H2 gases with different concentrations from 100 ppb to 5 ppm are measured to demonstrate the linear response of this system.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 11434007, 61475093, 61378047, 61275213, 61475093), the National Science and Technology Support Program, China (Grant No. 2013BAC14B01), the Shanxi Natural Science Foundation for Young Scientists, China (Grant Nos. 2013021004-1, 2012021022-1), the Shanxi Scholarship Council of China (Grant Nos. 2013-011, 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Kiehl J T, Trenberth K E 1997 Surv. Geophys. 78 197

    [2]

    Anne M A, Piliego C, Katsouras V, Blom P W M, de Leeuw D M 2014 Chem. Mater. 26 773

    [3]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096

    [4]

    Shao J, Gao X M, Yang Y, Huang W, Pei S X, Yuan Y Q, Zhou S K, Zhang W J 2006 Spectrosc. Spect. Anal. 26 213 (in Chinese) [邵杰, 高晓明, 杨顒, 黄伟, 裴世鑫, 袁怿谦, 周士康, 张为俊 2006 光谱学与光谱分析 26 213]

    [5]

    Pei S X, Gao X M, Cui F P, Huang W, Yang Y, Shao J, Huang T, Zhao W X, Zhang W J 2005 Chin. J. Chem. Phys. 18 660 (in Chinese) [裴世鑫, 高晓明, 崔芬萍, 黄伟, 杨颙, 邵杰, 黄腾, 赵卫雄, 张为俊 2005 化学 18 660]

    [6]

    Cao L, Wang C M, Chen Y Q, Yang X H 2006 Acta Phys. Sin. 55 6354 (in Chinese) [曹琳, 王春梅, 陈扬骎, 杨晓华 2006 55 6354]

    [7]

    Wang C M, Li J, Gong T L, Chen Y Q, Yang X H 2007 Acta Opt. Sin. 27 2087 (in Chinese) [王春梅, 李炯, 龚天林, 陈扬骎, 杨晓华 2007 光学学报 27 2087]

    [8]

    Wang D, Hu R Z, Xie P H, Qin M, Ling L Y, Duan J 2014 Spectrosc. Spect. Anal. 34 2845 (in Chinese) [王丹, 胡仁志, 谢品华, 秦敏, 凌六一, 段俊 2014 光谱学与光谱分析 34 2845]

    [9]

    O'Keefeand A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [11]

    Paldus B A, Harb C C, Spence T G, Wilke B, Xie J, Harris J S, Zare R N 1998 Appl. Phys. 83 3991

    [12]

    Pan H, Cheng C F, Sun Y, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [13]

    Truong G W, Douglass S E, van Zee R D, Plusquellic D F, Hodges J T, Long D A 2013 Appl. Phys.B 7 532

    [14]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [15]

    Ma W G, Zhao G, Fu X F, Li Z X, Tan W, Dong L, Zhang L, Yin W B, Jia S T 2014 Chin. J. Lasers 41 0115002 (in Chinese) [马维光, 赵刚, 付小芳, 李志新, 谭巍, 董磊, 张雷, 尹王保, 贾锁堂 2014 中国激光 41 0115002]

    [16]

    Leleux D P, Claps R, Chen W, Tittel F K, Harman T L 2002 Appl. Phys. B 74 85

    [17]

    Claps R, Englich F V, Leleux D P, Richter D, Tittel F K, Curl R F 2001 Appl. Opt. 40 4387

    [18]

    Riris H, Carlisle C B, Warren R E 1994 Appl. Opt. 33 5506

    [19]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Appl. Phys. Express 6 072402

    [20]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Opt. Express 21 17961

    [21]

    Kosterev A A, Malinovsky A L, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2011 Appl. Opt. 40 5522

    [22]

    Chen W G, Wan F, Zou J X, Gu Z L, Zhou Q 2015 Chin. Phys. B 24 024206

    [23]

    HITRAN 2008 Database (Version 12.0)

    [24]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

  • [1]

    Kiehl J T, Trenberth K E 1997 Surv. Geophys. 78 197

    [2]

    Anne M A, Piliego C, Katsouras V, Blom P W M, de Leeuw D M 2014 Chem. Mater. 26 773

    [3]

    Wang Y, Nikodem M, Zhang E, Cikach F, Barnes J, Comhair S, Dweik R A, Kao C, Wysocki G 2015 Sci. Rep. 5 9096

    [4]

    Shao J, Gao X M, Yang Y, Huang W, Pei S X, Yuan Y Q, Zhou S K, Zhang W J 2006 Spectrosc. Spect. Anal. 26 213 (in Chinese) [邵杰, 高晓明, 杨顒, 黄伟, 裴世鑫, 袁怿谦, 周士康, 张为俊 2006 光谱学与光谱分析 26 213]

    [5]

    Pei S X, Gao X M, Cui F P, Huang W, Yang Y, Shao J, Huang T, Zhao W X, Zhang W J 2005 Chin. J. Chem. Phys. 18 660 (in Chinese) [裴世鑫, 高晓明, 崔芬萍, 黄伟, 杨颙, 邵杰, 黄腾, 赵卫雄, 张为俊 2005 化学 18 660]

    [6]

    Cao L, Wang C M, Chen Y Q, Yang X H 2006 Acta Phys. Sin. 55 6354 (in Chinese) [曹琳, 王春梅, 陈扬骎, 杨晓华 2006 55 6354]

    [7]

    Wang C M, Li J, Gong T L, Chen Y Q, Yang X H 2007 Acta Opt. Sin. 27 2087 (in Chinese) [王春梅, 李炯, 龚天林, 陈扬骎, 杨晓华 2007 光学学报 27 2087]

    [8]

    Wang D, Hu R Z, Xie P H, Qin M, Ling L Y, Duan J 2014 Spectrosc. Spect. Anal. 34 2845 (in Chinese) [王丹, 胡仁志, 谢品华, 秦敏, 凌六一, 段俊 2014 光谱学与光谱分析 34 2845]

    [9]

    O'Keefeand A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [10]

    Romanini D, Kachanov A A, Sadeghi N, Stoeckel F 1997 Chem. Phys. Lett. 264 316

    [11]

    Paldus B A, Harb C C, Spence T G, Wilke B, Xie J, Harris J S, Zare R N 1998 Appl. Phys. 83 3991

    [12]

    Pan H, Cheng C F, Sun Y, Gao B, Liu A W, Hu S M 2011 Rev. Sci. Instrum. 82 103110

    [13]

    Truong G W, Douglass S E, van Zee R D, Plusquellic D F, Hodges J T, Long D A 2013 Appl. Phys.B 7 532

    [14]

    Cygan A, Lisak D, Maslowski P, Bielska K, Wojtewicz S, Domyslawska J, Trawinski R S, Ciurylo R, Abe H, Hodges J T 2011 Rev. Sci. Instrum. 82 063107

    [15]

    Ma W G, Zhao G, Fu X F, Li Z X, Tan W, Dong L, Zhang L, Yin W B, Jia S T 2014 Chin. J. Lasers 41 0115002 (in Chinese) [马维光, 赵刚, 付小芳, 李志新, 谭巍, 董磊, 张雷, 尹王保, 贾锁堂 2014 中国激光 41 0115002]

    [16]

    Leleux D P, Claps R, Chen W, Tittel F K, Harman T L 2002 Appl. Phys. B 74 85

    [17]

    Claps R, Englich F V, Leleux D P, Richter D, Tittel F K, Curl R F 2001 Appl. Opt. 40 4387

    [18]

    Riris H, Carlisle C B, Warren R E 1994 Appl. Opt. 33 5506

    [19]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Appl. Phys. Express 6 072402

    [20]

    Li Z, Ma W, Fu X, Tan W, Zhao G, Dong L, Zhang L, Yin W, Jia S 2013 Opt. Express 21 17961

    [21]

    Kosterev A A, Malinovsky A L, Tittel F K, Gmachl C, Capasso F, Sivco D L, Baillargeon J N, Hutchinson A L, Cho A Y 2011 Appl. Opt. 40 5522

    [22]

    Chen W G, Wan F, Zou J X, Gu Z L, Zhou Q 2015 Chin. Phys. B 24 024206

    [23]

    HITRAN 2008 Database (Version 12.0)

    [24]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

  • [1] Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Jiang Meng, Zhang Yu, Guo Dong, Zhang Ji-Hai. Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory. Acta Physica Sinica, 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] Huang Zhi-Qiu, Zhang Meng, Peng Zhi-Min, Wang Zhen, Yang Qian-Suo. Influence of finite coherence of injected light on ring-down cavity measurement method and intensity integral method for ring-down time determination. Acta Physica Sinica, 2023, 72(18): 184205. doi: 10.7498/aps.72.20230448
    [3] Xiong Feng, Peng Zhi-Min, Wang Zhen, Ding Yan-Jun, Lü Jun-Fu, Du Yan-Jun. Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance. Acta Physica Sinica, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [4] Rao Bing-Jie, Zhang Pan, Li Ming-Kun, Yang Xi-Guang, Yan Lu-Lu, Chen Xin, Zhang Shou-Gang, Zhang Yan-Yan, Jiang Hai-Feng. Multi-branch erbium fiber-based femtosecond optical frequency comb for measurement of cavity ring-down spectroscopy. Acta Physica Sinica, 2022, 71(8): 084203. doi: 10.7498/aps.71.20212162
    [5] Wang Xing-Ping, Zhao Gang, Jiao Kang, Chen Bing, Kan Rui-Feng, Liu Jian-Guo, Ma Wei-Guang. Erratum: Uncertainty of optical feedback linear cavity ringdown spectroscopy[Acta Phys. Sin. 2022, 71(12): 124201]. Acta Physica Sinica, 2022, 71(15): 159901. doi: 10.7498/aps.71.159901
    [6] Wang Xing-Ping, Zhao Gang, Jiao Kang, Chen Bing, Kan Rui-Feng, Liu Jian-Guo, Ma Wei-Guang. Uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [7] Wang Xing-Ping,  Zhao Gang,  Jiao Kang,  Chen Bing,  Kan Rui-Feng,  Liu Jian-Guo,  Ma Wei-Guang. Research on uncertainty of optical feedback linear cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [8] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [9] Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Zhang Yu, Wang Yan-Ping. An improved Kalman filter time scale algorithm for atomic clock noise variation. Acta Physica Sinica, 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [10] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform. Acta Physica Sinica, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [11] Wang Jin-Duo, Yu Jin, Mo Ze-Qiang, He Jian-Guo, Dai Shou-Jun, Meng Jing-Jing, Wang Xiao-Dong, Liu Yang. Numerical methods of mode selection in continuous-wave cavity ring-down spectroscopy. Acta Physica Sinica, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [12] Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique. Acta Physica Sinica, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [13] Kang Peng, Sun Yu, Wang Jin, Liu An-Wen, Hu Shui-Ming. Measurement of molecular absorption spectrum with a laser locked on a high-finesse cavity. Acta Physica Sinica, 2018, 67(10): 104206. doi: 10.7498/aps.67.20172532
    [14] Huang Hua, Wu Yang, Liu Zhen-Bang, Yuan Huan, He Hu, Li Le-Le, Li Zheng-Hong, Jin Xiao, Ma Hong-Ge. Review on high power microwave device with locked frequency and phase. Acta Physica Sinica, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [15] Lin Xu, Luo Zhi-Cai. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors. Acta Physica Sinica, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [16] Hu Ren-Zhi, Wang Dan, Xie Pin-Hua, Ling Liu-Yi, Qin Min, Li Chuan-Xin, Liu Jian-Guo. Diode laser cavity ring-down spectroscopy for atmospheric NO3 radical measurement. Acta Physica Sinica, 2014, 63(11): 110707. doi: 10.7498/aps.63.110707
    [17] Liu Yang-Yang, Lian Bao-Wang, Zhao Hong-Wei, Liu Ya-Qing. Indoor pseudolite relative localization algorithm with kalman filter. Acta Physica Sinica, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [18] Xue Yu-Hao, Zhou Jun, He Bing, Qi Yun-Feng, Li Zhen, Liu Chi. Passive phase locking of fiber laser based on spatial filtering. Acta Physica Sinica, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [19] Cao Lin, Wang Chun-Mei, Chen Yang-Qin, Yang Xiao-Hua. Theoretical investigation of optical heterodyne cavity ring down spectroscopy. Acta Physica Sinica, 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [20] ZHAO HONG-TAI, LIU XIAO-JUN, CAO JUN-WEN, PENG LIANG-YOU, ZHAN MING-SHENG. MEASUREMENT OF THE TRANSITION OF BARIUM 6s6p1P1←6s6s1S0 USING CAVITY RINGDOWN SPECTROSCOPY. Acta Physica Sinica, 2001, 50(7): 1274-1278. doi: 10.7498/aps.50.1274
Metrics
  • Abstract views:  6521
  • PDF Downloads:  259
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2016
  • Accepted Date:  12 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map