-
Multiferroics simultaneously exhibit several order parameters such as ferroelectricity and antiferromagnetism, representing an appealing class of multifunctional material. As the only multiferroics above room temperature, BiFeO3 (BFO) becomes an attractive choice for a wide variety of applications in the areas of sensors and spintronic devices. The coexistence of several order parameters brings about novel physical phenomena, for example, the magnetoelectric coupling effect. It allows the reversal of ferroelectric polarization by a magnetic field or the control of magnetic order parameter by an electric field. Heterostructure interface plays an important role in enhancing the ferroelectric and magnetic properties of multiferroic materials. Furthermore, the magnetoelectric coupling at the interface between the antiferromagnetism BFO and a ferromagnetic film has the close relation with achieving a functional multiferroic-ferromagnetic heterostructure. In order to determine the relationship between the multiferroic property and the interface experimentally, we prepare the Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO) heterostructure on an SrTiO3(STO) substrate by pulsed laser deposition, and the structure characteristics and ferroelectric and magnetic properties are investigated. X-ray diffraction analysis shows that BBFO and LSMO films are epitaxially grown as single-phase. The further study by high-resolution transmission electron microscopy determines that the BBFO film has a tetragonal structure. The ferroelectric and magnetic measurements show that the magnetic and the ferroelectric properties are simultaneously improved, and the maximum values of the remnant polarization (2Pr) and the saturation magnetization of the heterostructure at room temperature are about 3.25 C/cm2 and 112 emu/cm3, respectively. The reasons for enhancing the ferroelectric and ferromagnetic properties of heterostructure are demonstrated by X-ray photoelectron spectrum that shows being unrelated to the valence states of Fe element. On the contrary, interface effect plays a major role. In addition, the magnetic resistivities and dielectric properties of BBFO/LSMO heterostructure are investigated at temperatures in a range of 50 K to 300 K, finding that magnetoresistance (MR) and magnetodielectric (MD) are respectively about -42.2% and 21.9% at 70 K with a magnetic field of 0.8 T, and the transition of magnetic phase takes place near 180 K. Furthermore, the temperature dependences of magnetodielectric and magnetoloss (ML) present opposite tendencies, suggesting that magnetodielectric is caused by Maxwell-Wagner effect and the magnetoresistance. Experimental results reveal that heterogeneous interface effect shows the exceptional advantages in enhancing multiferroic property and magnetoelectric coupling effect of complex heterostructure material. It is an effective way to speed up the application of multiferroic materials.
-
Keywords:
- multiferroics /
- magnetoresistance /
- magnetodielectric /
- interface effects
[1] Bell A J 2008 J. Eur. Ceram. Soc. 28 1307
[2] Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753
[3] Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 63 117801]
[4] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
[5] Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602
[6] Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40
[7] Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903
[8] Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902
[9] Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476
[10] Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376
[11] Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 64 088101]
[12] Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426
[13] Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908
[14] Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73
[15] Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603
[16] Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801
[17] Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221
[18] Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904
[19] Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402
[20] Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201
[21] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721
[22] Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914
[23] Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907
[24] Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30
[25] Anderson P W 1950 Phys. Rev. 79 350
[26] Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814
[27] Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102
[28] Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703
[29] Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113
[30] Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010
[31] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428
[32] Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402
[33] Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203
[34] Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71
[35] Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133
[36] Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542
[37] Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149
[38] Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775
-
[1] Bell A J 2008 J. Eur. Ceram. Soc. 28 1307
[2] Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753
[3] Xu Y, Zhang Z Y, Jin Z M, Pan Q F, Lin X, Ma G H, Cheng Z X 2014 Acta Phys. Sin. 63 117801 (in Chinese) [徐悦, 张泽宇, 金钻明, 潘群峰, 林贤, 马国宏, 程振祥 2014 63 117801]
[4] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55
[5] Lebeugle D, Colson D, Forget A, Viret M, Bataille A M, Gukasov A 2008 Phys. Rev. Lett. 100 227602
[6] Annapu Reddy V, Pathak N, Nath R 2013 Solid State Commun. 171 40
[7] Qi X D, Dho J, Tomov R, Blamire M G, MacManus-Driscoll J L {2005 Appl. Phys. Lett. 86 2903
[8] Hwang J S, Cho J Y, Park S Y, Yoo Y J, Yoo P S, Lee B W, Lee Y P 2015 Appl. Phys. Lett. 106 062902
[9] Costa L V, Deus R C, Foschini C R, Longo E, Cilense M, Simes A Z 2014 Mater. Chem. Phys. 144 476
[10] Seidel J, Trassin M, Zhang Y, Maksymovych P, Uhlig T, Pan X 2014 Adv. Mater. 26 4376
[11] Song G L, Su J, Zhang N, Chang F G {2015 Acta Phys. Sin. 64 088101 (in Chinese) [宋桂林, 苏健, 张娜, 常方高 2015 64 088101]
[12] Trassin M, Clarkson J D, Bowden S R, Liu J, Heron J T, Paull R J, Arenholz E, Pierce D T, Unguris J 2013 Phys. Rev. B 87 134426
[13] Singamaneni S R, Prater J T, Nori S, Kumar D, Narayan J 2015 J. Appl. Phys. 117 17D908
[14] Deng H L, Zhang M, Wei J Z, Chu S J, Du M Y, Yan H {2015 Solid-State Electron. 109 73
[15] Li M, Ning M, Ma Y, Wu Q, Ong C K 2007 J. Phys. D 40 1603
[16] Yang J C, Huang Y L, He Q, Chu Y H 2014 J. Appl. Phys. 116 066801
[17] Ba H, Gajek M, Bibes M, Barthlmy A 2008 J. Phys.: Condens. Matter 20 434221
[18] Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904
[19] Yin L H, Song W H, Jiao X L, Wu W B, Zhu X B, Sun Y P 2009 J. Phys. D: Appl. Phys. 42 205402
[20] Yu P, Lee J S, Okamoto S, Rossell M D, Huijben M, Yang C H, Ramasse Q M 2010 Phys. Rev. Lett. 105 027201
[21] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Spaldin N A 2003 Science 299 1721
[22] Das R, Mandal K {2012 J. Magn. Magn. Mater. 324 1914
[23] Wang D H, Goh W C, Ning M, Ong C K {2006 Appl. Phys. Lett. 88 2907
[24] Yang C, Jiang J S, Qian F Z, Jiang D M, Wang C M, Zhang W G {2010 J. Alloys Compd. 507 30
[25] Anderson P W 1950 Phys. Rev. 79 350
[26] Rao S S, Prater J T, Wu F, Shelton C T, Maria J P, Narayan J 2013 Nano Lett. 13 5814
[27] Singh S K, Ishiwara H, Maruyama K 2006 J. Appl. Phys. 100 064102
[28] Wen X L, Chen Z, Lin X, Niu L W, Duan M M, Zhang Y J, Chen C L 2014 Chin. Phys. B 23 117703
[29] Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113
[30] Majumdar S, Dijken S V {2013 J. Phys. D: Appl. Phys. 47 034010
[31] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H 2005 Phys. Rev. B 71 184428
[32] Chen P, Xing D Y, Du Y W 2001 Phys. Rev. B 64 104402
[33] Scott J F, Singh M K, Katiyar R S 2008 J. Phys. Condens. Matter 20 322203
[34] Mandal P R, Nath T K 2014 J. Alloys Compd. 599 71
[35] Ren P, Liu P, Xia B, Zou X, You L, Wang J L, Wang L 2012 AIP Adv. 2 022133
[36] Singh H, Kumar A, Yadav K L {2011 Mater. Sci. Eng. B 176 542
[37] Uniyal P, Yadav K L 2012 J. Alloys Compd. 511 149
[38] Liu Y K, Yao Y P, Dong S N, Jiang T, Yang S W, Li X G 2012 Thin Solid Films 520 5775
Catalog
Metrics
- Abstract views: 5565
- PDF Downloads: 208
- Cited By: 0