Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of spinterface in organic spintronic devices

Li Jing Ding Shuai-Shuai Hu Wen-Ping

Citation:

Research of spinterface in organic spintronic devices

Li Jing, Ding Shuai-Shuai, Hu Wen-Ping
PDF
HTML
Get Citation
  • Spintronics are attractive to the utilization in next-generation quantum-computing and memory. Compared with inorganic spintronics, organic spintronics not only controls the spin degree-of-freedom but also possesses advantages such as chemical tailorability, flexibility, and low-cost fabrication process. Besides, the organic spin valve with a sandwich configuration that is composed of two ferromagnetic electrodes and an organic space layer is one of the classical devices in organic spintronics. Greatly enhanced or inversed magnetoresistance (MR) sign appearing in organic spin valve is induced by the unique interfacial effect an organic semiconductor/ferromagnetic interface. The significant enhancement or inversion of MR is later proved to be caused by the spin-dependent hybridization between molecular and ferromagnetic interface, i.e., the spinterface. The hybridization is ascribed to spin-dependent broadening and shifting of molecular orbitals. The spinterface takes place at one molecular layer when attaching to the surface of ferromagnetic metal. It indicates that the MR response can be modulated artificially in a specific device by converting the nature of spinterface. Despite lots of researches aiming at exploring the mechanism of spinterface, several questions need urgently to be resolved. For instance, the spin polarization, which is difficult to identify and observe with the surface sensitive technique and the inversion or enhancement of MR signal, which is also hard to explain accurately. The solid evidence of spinterface existing in real spintronic device also needs to be further testified. Besides, the precise manipulation of the MR sign by changing the nature of spinterface is quite difficult. According to the above background, this review summarizes the advance in spinterface and prospects future controllable utilization of spinterface. In Section 2, we introduce the basic principle of spintronic device and spinterface. The formation of unique spinterface in organic spin valve is clarified by using the difference in energy level alignment between inorganic and organic materials. Enhancement and inversion of MR sign are related to the broadening and shifting of the molecular level. In Section 3, several examples about identification of spinterface are listed, containing characterization by surface sensitive techniques and identification in real working devices. In Section 4 some methods about the manipulation of spinterface are exhibited, including modulation of ferroelectric organic barrier, interface engineering, regulation of electronic phase separation in ferromagnetic electrodes, etc. Finally, in this review some unresolved questions in spintronics are given, such as multi-functional and room-temperature organic spin valve and improvement of the spin injection efficiency. Spinterface is of great importance for both scientific research and future industrial interest in organic spintronics. The present study paves the way for the further development of novel excellent organic spin valves.
      Corresponding author: Ding Shuai-Shuai, dingshuaishuai@tju.edu.cn ; Hu Wen-Ping, huwp@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52003190, 21875158, 91833306, 51633006, 51733004) and the National Key R&D Program of China (Grant No. 2017YFA0204503).
    [1]

    Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [2]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [3]

    Aragonès A C, Aravena D, Cerdá J I, Acís-Castillo Z, Li H, Real J A, Sanz F, Hihath J, Ruiz E, Díez-Pérez I 2016 Nano Lett. 16 218Google Scholar

    [4]

    Guo L, Gu X, Zhu X, Sun X 2019 Adv. Mater. 31 1805355Google Scholar

    [5]

    Devkota J, Geng R G, Subedi R C, Nguyen T D 2016 Adv. Funct. Mater. 26 3881Google Scholar

    [6]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [7]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [8]

    Ding S S, Tian Y, Li Y, Zhang H T, Zhou K, Liu J Y, Qin L, Zhang X X, Qiu X H, Dong H L, Zhu D B, Hu W P 2019 ACS Nano 13 9491Google Scholar

    [9]

    Sun D, Ehrenfreund E, Valy Vardeny Z 2014 Chem. Commun. 50 1781Google Scholar

    [10]

    Sun X, Gobbi M, Bedoya-Pinto A, Txoperena O, Golmar F, Llopis R, Chuvilin A, Casanova F, Hueso L E 2013 Nat. Commun. 4 2794Google Scholar

    [11]

    Gobbi M, Golmar F, Llopis R, Casanova F, Hueso L E 2011 Adv. Mater. 23 1609Google Scholar

    [12]

    Tran T L A, Le T Q, Sanderink J G M, van der Wiel W G, de Jong M P 2012 Adv. Funct. Mater. 22 1180Google Scholar

    [13]

    Dediu V A, Hueso L E, Bergenti I, Taliani C 2009 Nat. Mater. 8 707Google Scholar

    [14]

    Ding S, Tian Y, Hu W 2021 Nano Res. 14 3653Google Scholar

    [15]

    Xiong Z H, Wu D, Valy Vardeny Z, Shi J 2004 Nature 427 821Google Scholar

    [16]

    Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Science 337 204Google Scholar

    [17]

    Wang C, Fu B, Zhang X, Li R, Dong H, Hu W 2020 ACS. Central. Sci. 6 636Google Scholar

    [18]

    Zhou K, Dai K, Liu C, Shen C 2020 SmartMat 1 e1010

    [19]

    Yao Y, Chen Y, Wang H, Samorì P 2020 SmartMat 1 e1009

    [20]

    Huang Y, Gong X, Meng Y, Wang Z, Chen X, Li J, Ji D, Wei Z, Li L, Hu W 2021 Nat. Commun. 12 21Google Scholar

    [21]

    Chow P C Y, Someya T 2020 Adv. Mater. 32 1902045Google Scholar

    [22]

    Krinichnyi V I, Chemerisov S D, Lebedev Y S 1997 Phy. Rev. B 55 16233Google Scholar

    [23]

    Zhang X, Tong J, Ruan L, Yao X, Zhou L, Tian F, Qin G 2020 Phys. Chem. Chem. Phys. 22 11663Google Scholar

    [24]

    Boehme C, Lupton J M 2013 Nat. Nanotechnol. 8 612Google Scholar

    [25]

    Tsurumi J, Matsui H, Kubo T, Häusermann R, Mitsui C, Okamoto T, Watanabe S, Takeya J 2017 Nat. Phys. 13 994Google Scholar

    [26]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336Google Scholar

    [27]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [28]

    Sun X N, Velez S, Atxabal A, Bedoya-Pinto A, Parui S, Zhu X W, Llopis R, Casanova F, Hueso L E 2017 Science 357 677Google Scholar

    [29]

    Koplovitz G, Primc D, Ben Dor O, Yochelis S, Rotem D, Porath D, Paltiel Y 2017 Adv. Mater. 29 1606748Google Scholar

    [30]

    Jang H J, Richter C A 2017 Adv. Mater. 29 1602739Google Scholar

    [31]

    Wang Y, Yao J, Ding S, Guo S, Cui D, Wang X, Yang S, Zhang L, Tian X, Wu D, Jin C, Li R, Hu W 2021 Sci. China Mater. 64 2795Google Scholar

    [32]

    Kang J, Sangwan V K, Wood J D, Hersam M C 2017 Accounts. Chem. Res. 50 943Google Scholar

    [33]

    Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F, Hueso L E 2016 Adv. Mater. 28 2609Google Scholar

    [34]

    Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew A J, Gillin W P, Dediu V A 2013 Adv. Mater. 25 534Google Scholar

    [35]

    Drew A J, Hoppler J, Schulz L, et al. 2009 Nat. Mater. 8 109Google Scholar

    [36]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nat. Mater. 8 115Google Scholar

    [37]

    Lach S, Altenhof A, Tarafder K, Schmitt F, Ali M E, Vogel M, Sauther J, Oppeneer P M, Ziegler C 2012 Adv. Funct. Mater. 22 989Google Scholar

    [38]

    Prezioso M, Riminucci A, Bergenti I, Graziosi P, Brunel D, Dediu V A 2011 Adv. Mater. 23 1371Google Scholar

    [39]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [40]

    Li T, Xu L, Xiao X, Chen F, Cao L, Wu W, Tong W, Zhang F 2020 ACS Appl. Mater. Interf. 12 2708Google Scholar

    [41]

    Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y 2008 Phys. Rev. B 78 115203Google Scholar

    [42]

    Heimel G, Romaner L, Zojer E, Bredas J-L 2008 Accounts. Chem. Res. 41 721Google Scholar

    [43]

    Liu C, Xu Y, Noh Y Y 2015 Mater. Today 18 79Google Scholar

    [44]

    Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A 2010 Nat. Phys. 6 615Google Scholar

    [45]

    Bergenti I, Dediu V 2019 Nano Mater. Sci. 1 149Google Scholar

    [46]

    Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R, Seneor P 2014 MRS Bull. 39 602Google Scholar

    [47]

    Brede J, Wiesendanger R 2012 Phys. Rev. B 86 184423Google Scholar

    [48]

    Ding S, Tian Y, Li Y, Mi W, Dong H, Zhang X, Hu W, Zhu D 2017 ACS Appl. Mater. Inter. 9 15644Google Scholar

    [49]

    Ciudad D, Gobbi M, Kinane C J, Eich M, Moodera J S, Hueso L E 2014 Adv. Mater. 26 7561Google Scholar

    [50]

    Han X, Mi W, Wang X 2019 J. Mater. Chem. C 7 4079Google Scholar

    [51]

    Liang S, Yang H, Yang H, et al. 2016 Adv. Mater. 28 10204Google Scholar

    [52]

    Naber W J M, Faez S, van der Wiel W G 2007 J. Phys. D. Appl. Phys. 40 R205Google Scholar

    [53]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [54]

    Vardeny Z V 2010 Organic Spintronics (CRC Press) pp112, 140

    [55]

    Schmidt G, Molenkamp L W 2002 Semicond. Sci. Tech. 17 310Google Scholar

    [56]

    Köhler A, Bässler H 2015 Electronic Processes in Organic Semiconductors (Wiley-VCH) p117

    [57]

    Marta G 2016 Molecular Spintronics (Cham: Springer) pp7–9, 20–21, 32–36

    [58]

    Ji D Y, Li T, Liu J, Amirjalayer S, Zhong M Z, Zhang Z Y, Huang X H, Wei Z M, Dong H L, Hu W P, Fuchs H 2019 Nat. Commun. 10 1Google Scholar

    [59]

    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H 2020 Nat. Mater. 19 491Google Scholar

    [60]

    Cohen M J, Coleman L B, Garito A F, Heeger A J 1974 Phys. Rev. B 10 1298Google Scholar

    [61]

    Berleb S, Brütting W 2002 Phys. Rev. Lett. 89 286601Google Scholar

    [62]

    Vázquez H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F, Kahn A 2004 Europhys. Lett. 65 802Google Scholar

    [63]

    Perrin M L, Verzijl C J O, Martin C A, Shaikh A J, Eelkema R, van Esch J H, van Ruitenbeek J M, Thijssen J M, van der Zant H S J, Dulić D 2013 Nat. Nanotechnol. 8 282Google Scholar

    [64]

    Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R, Blügel S 2010 Phys. Rev. Lett. 105 066601Google Scholar

    [65]

    Kawahara S L, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A, Barreteau C 2012 Nano Lett. 12 4558Google Scholar

    [66]

    Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu V A, Luo Y, Fahlman M 2014 Adv. Funct. Mater. 24 4812Google Scholar

    [67]

    Iacovita C, Rastei M V, Heinrich B W, Brumme T, Kortus J, Limot L, Bucher J P 2008 Phys. Rev. Lett. 101 116602Google Scholar

    [68]

    Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M, Moodera J S 2013 Nature 493 509Google Scholar

    [69]

    Ding S S, Tian Y, Wang H L, Zhou Z, Mi W B, Ni Z J, Zou Y, Dong H L, Gao H J, Zhu D B, Hu W P 2018 ACS Nano 12 12657Google Scholar

    [70]

    Ding S S, Tian Y, Liu X, Zou Y, Dong H L, Mi W B, Hu W P 2021 Nano Res. 14 304Google Scholar

    [71]

    Sun D, Fang M, Xu X, Jiang L, Guo H, Wang Y, Yang W, Yin L, Snijders P C, Ward T Z, Gai Z, Zhang X G, Lee H N, Shen J 2014 Nat. Commun. 5 4396Google Scholar

    [72]

    Yang W, Shi Q, Miao T, Li Q, Cai P, Liu H, Lin H, Bai Y, Zhu Y, Yu Y, Deng L, Wang W, Yin L, Sun D, Zhang X G, Shen J 2019 Nat. Commun. 10 3877Google Scholar

    [73]

    Raman K V 2014 Appl. Phys. Rev. 1 031101Google Scholar

  • 图 1  (a)有机自旋阀器件示意图; (b)有机自旋阀器件中随着施加磁场变化的理想磁电阻曲线

    Figure 1.  (a) Schematic of organic spin valve device; (b) ideal MR curve when sweeping the applied magnetic field on organic spin valve devices.

    图 2  (a)和(b)磁性隧道结中铁磁电极在平行和反平行磁化状态的结构示意图; (c)和(d)在平行和反平行磁化状态下铁磁层的能带结构; (e)和(f)在磁化方向平行和反平行状态下的双电阻网络模型[54]

    Figure 2.  (a) and (b) Schematics shows different states of ferromagnetic electrode with parallel and antiparallel magnetization in MTJ; (c) and (d) band structure of ferromagnetic layer for parallel and antiparallel magnetization; (e) and (f) two-resistor network model for magnetization of parallel and antiparallel alignment[54].

    图 3  无机材料和有机物材料分子的能级结构示意图, 以及无机和有机材料在接近铁磁电极后能级发生的不同变化的示意图[46]

    Figure 3.  Schematic diagram of the band structure of inorganic materials and organic materials, and the schematic diagram of the energy difference between inorganic and organic molecule closed to a ferromagnetic electrode[46].

    图 4  自旋界面的示意图 (a)无机物和铁磁电极接触界面的导带和价带示意图; (b)自旋界面处当$\varGamma \gg \Delta E$时会诱导自旋极化的反转; (c)$\varGamma \ll \Delta E$时会造成自旋极化增强[46]

    Figure 4.  Schematics of spinterface[46]: (a) Schematics of conduction and valence band structure at inorganic/FM interface; (b) inversed spin-polarization case of $\varGamma \gg \Delta E$ at the spinterface; (c) enhanced spin-polarization case of $\varGamma \ll \Delta E$ at the interface[46].

    图 5  (a) H2Pc吸附在Fe上的SP-STM图[64]; (b) 两个吸附在Cr (001)表面的C60分子上的电导图[65]; 吸附于Co基底上不同厚度TNAP的UPS图, 其中(c)—(e)分别对应(c)二次电子截止边、(d)价带边、(e)价带的细节谱图; (f)在Co上TNAP吸附前后Co的L边XMCD图; (g) 单层和多层TNAP在Co上N元素的K边NEXAFS图[66]

    Figure 5.  (a) SP-STM image of H2Pc absorbed on Fe[64]. (b) conductance maps measured over two C60 molecules absorbed on Cr (001) surface[65]. UPS spectra of TNAP with different thickness deposited on Co substrate: (c) Secondary electron cutoff; (d) valence band; (e) detail spectral features of valence band. (f) Co L-edge XMCD results before and after adsorption of TNAP on Co; (g) NEXAFS N K-edge spectra of monolayer and multilayer TNAP on Co[66].

    图 6  (a) AlOx绝缘层对Co渗透的阻挡作用及渗透的Co和P3HT间形成自旋界面的示意图; (b) LSMO/P3HT/AlOx/Co器件中自旋依赖电子隧穿过程示意图[48]

    Figure 6.  (a) Schematic drawing of blocking effect for the insulated AlOx to penetrated Co, and the formation of spinterface between penetrated Co and P3HT molecular; (b) schematics of spin-dependent electron tunneling in LSMO/P3HT/AlOx/Co junction[48].

    图 7  (a)和(b)分别为器件A和器件B的磁输运测试; (c)无LiF层、具有反铁磁双氟层和LiF沉积在氧化铝上的器件结构以及对应的磁电阻信号示意图[49]

    Figure 7.  (a) and (b) Magnetotransport measurements of device A and device B, respectively; (c) schematics of devices with no LiF layer, an anti-ferromagnetic difluoride layer and LiF deposited on an alumina and their respective MR curves [49].

    图 8  (a) Fe3O4/P3HT/Co有机自旋阀器件示意图; (b) 不同电流下Fe3O4/P3HT/Co有机自旋阀器件和Fe3O4电极MR值与温度的关系; (c) 不同温度下孪晶界对自旋注入调制过程的模型图[70]

    Figure 8.  (a) Schematic of organic spin valve device of Fe3O4/P3HT/Co; (b) relationship between MR ratio and temperature for Fe3O4/P3HT/Co OSV device and Fe3O4 electrode at different bias current; (c) model of twin boundary-modulated spin injection at different temperature[70].

    图 9  (a) LSMO/PVDF/Co器件示意图; (b)在PVDF表面测得的PFM相图; (c) 极化后器件所测得的隧穿磁电阻信号; (d)在10 mV, 10 K条件下测得LSMO/PVDF/Co器件的隧穿磁电阻; (e)在10 mV, 10 K条件下测得LSMO/PVDF/MgO/Co器件的隧穿磁电阻[51]

    Figure 9.  (a) Schematic of LSMO/PVDF/Co device; (b) PFM phase image measured on the PVDF surface; (c) tunneling magnetoresistance measured after polarizing the device; (d) tunneling magneto resistance of a LSMO/PVDF/Co device measured under 10 mV at 10 K; (e) tunneling magneto resistance of a LSMO/PVDF/MgO/Co device measured under 10 mV at 10 K[51].

    图 10  (a) Au/Co/Alq3/PZT/LSMO有机自旋阀的器件示意图; (b)和(c)施加不同预设电压后MR的偏移; (d)当PZT的电极化向上和向下时器件的能级关系示意图[71]

    Figure 10.  (a) Schematic of a Au/Co/Alq3/PZT/LSMO organic spin valve device; (b) and (c) MR shift after applying different ramping voltage; (d) the energy relationship schematic of device when the electric polarization of the PZT is “up” and “down”[71].

    图 11  在LPCMO有机自旋阀中(a) FMM和COI相共存和(b)全FE相时的EPS调制自旋注入示意图; (c)在LPCMO有机自旋阀中不同预设磁场强度下的MR信号[72]

    Figure 11.  Illustration of EPS-modulated spin current injection in the LPCMO-OSVs under the co-existed FM/COI phase (a) and fully FM phase (b) of the LPCMO thin film; (c) MR loops of the LPCMO-OSV device under different pre-set magnetic field strength[72].

    图 12  (a) ZMP分子化学吸附于Co电极的示意图[4]; (b) 单铁磁电极器件所测得的磁电阻信号[4]

    Figure 12.  (a) Schematic of ZMP molecular chemisorbed on Co ferromagnetic electrode[4]; (b) magnetoresistance of device with a single ferromagnetic[4].

    Baidu
  • [1]

    Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar

    [2]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [3]

    Aragonès A C, Aravena D, Cerdá J I, Acís-Castillo Z, Li H, Real J A, Sanz F, Hihath J, Ruiz E, Díez-Pérez I 2016 Nano Lett. 16 218Google Scholar

    [4]

    Guo L, Gu X, Zhu X, Sun X 2019 Adv. Mater. 31 1805355Google Scholar

    [5]

    Devkota J, Geng R G, Subedi R C, Nguyen T D 2016 Adv. Funct. Mater. 26 3881Google Scholar

    [6]

    Xin N, Guan J X, Zhou C G, Chen X J N, Gu C H, Li Y, Ratner M A, Nitzan A, Stoddart J F, Guo X F 2019 Nat. Rev. Phys. 1 211Google Scholar

    [7]

    Gehring P, Thijssen J M, van der Zant H S J 2019 Nat. Rev. Phys. 1 381Google Scholar

    [8]

    Ding S S, Tian Y, Li Y, Zhang H T, Zhou K, Liu J Y, Qin L, Zhang X X, Qiu X H, Dong H L, Zhu D B, Hu W P 2019 ACS Nano 13 9491Google Scholar

    [9]

    Sun D, Ehrenfreund E, Valy Vardeny Z 2014 Chem. Commun. 50 1781Google Scholar

    [10]

    Sun X, Gobbi M, Bedoya-Pinto A, Txoperena O, Golmar F, Llopis R, Chuvilin A, Casanova F, Hueso L E 2013 Nat. Commun. 4 2794Google Scholar

    [11]

    Gobbi M, Golmar F, Llopis R, Casanova F, Hueso L E 2011 Adv. Mater. 23 1609Google Scholar

    [12]

    Tran T L A, Le T Q, Sanderink J G M, van der Wiel W G, de Jong M P 2012 Adv. Funct. Mater. 22 1180Google Scholar

    [13]

    Dediu V A, Hueso L E, Bergenti I, Taliani C 2009 Nat. Mater. 8 707Google Scholar

    [14]

    Ding S, Tian Y, Hu W 2021 Nano Res. 14 3653Google Scholar

    [15]

    Xiong Z H, Wu D, Valy Vardeny Z, Shi J 2004 Nature 427 821Google Scholar

    [16]

    Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Science 337 204Google Scholar

    [17]

    Wang C, Fu B, Zhang X, Li R, Dong H, Hu W 2020 ACS. Central. Sci. 6 636Google Scholar

    [18]

    Zhou K, Dai K, Liu C, Shen C 2020 SmartMat 1 e1010

    [19]

    Yao Y, Chen Y, Wang H, Samorì P 2020 SmartMat 1 e1009

    [20]

    Huang Y, Gong X, Meng Y, Wang Z, Chen X, Li J, Ji D, Wei Z, Li L, Hu W 2021 Nat. Commun. 12 21Google Scholar

    [21]

    Chow P C Y, Someya T 2020 Adv. Mater. 32 1902045Google Scholar

    [22]

    Krinichnyi V I, Chemerisov S D, Lebedev Y S 1997 Phy. Rev. B 55 16233Google Scholar

    [23]

    Zhang X, Tong J, Ruan L, Yao X, Zhou L, Tian F, Qin G 2020 Phys. Chem. Chem. Phys. 22 11663Google Scholar

    [24]

    Boehme C, Lupton J M 2013 Nat. Nanotechnol. 8 612Google Scholar

    [25]

    Tsurumi J, Matsui H, Kubo T, Häusermann R, Mitsui C, Okamoto T, Watanabe S, Takeya J 2017 Nat. Phys. 13 994Google Scholar

    [26]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336Google Scholar

    [27]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [28]

    Sun X N, Velez S, Atxabal A, Bedoya-Pinto A, Parui S, Zhu X W, Llopis R, Casanova F, Hueso L E 2017 Science 357 677Google Scholar

    [29]

    Koplovitz G, Primc D, Ben Dor O, Yochelis S, Rotem D, Porath D, Paltiel Y 2017 Adv. Mater. 29 1606748Google Scholar

    [30]

    Jang H J, Richter C A 2017 Adv. Mater. 29 1602739Google Scholar

    [31]

    Wang Y, Yao J, Ding S, Guo S, Cui D, Wang X, Yang S, Zhang L, Tian X, Wu D, Jin C, Li R, Hu W 2021 Sci. China Mater. 64 2795Google Scholar

    [32]

    Kang J, Sangwan V K, Wood J D, Hersam M C 2017 Accounts. Chem. Res. 50 943Google Scholar

    [33]

    Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F, Hueso L E 2016 Adv. Mater. 28 2609Google Scholar

    [34]

    Prezioso M, Riminucci A, Graziosi P, Bergenti I, Rakshit R, Cecchini R, Vianelli A, Borgatti F, Haag N, Willis M, Drew A J, Gillin W P, Dediu V A 2013 Adv. Mater. 25 534Google Scholar

    [35]

    Drew A J, Hoppler J, Schulz L, et al. 2009 Nat. Mater. 8 109Google Scholar

    [36]

    Cinchetti M, Heimer K, Wüstenberg J P, Andreyev O, Bauer M, Lach S, Ziegler C, Gao Y, Aeschlimann M 2009 Nat. Mater. 8 115Google Scholar

    [37]

    Lach S, Altenhof A, Tarafder K, Schmitt F, Ali M E, Vogel M, Sauther J, Oppeneer P M, Ziegler C 2012 Adv. Funct. Mater. 22 989Google Scholar

    [38]

    Prezioso M, Riminucci A, Bergenti I, Graziosi P, Brunel D, Dediu V A 2011 Adv. Mater. 23 1371Google Scholar

    [39]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [40]

    Li T, Xu L, Xiao X, Chen F, Cao L, Wu W, Tong W, Zhang F 2020 ACS Appl. Mater. Interf. 12 2708Google Scholar

    [41]

    Dediu V, Hueso L E, Bergenti I, Riminucci A, Borgatti F, Graziosi P, Newby C, Casoli F, De Jong M P, Taliani C, Zhan Y 2008 Phys. Rev. B 78 115203Google Scholar

    [42]

    Heimel G, Romaner L, Zojer E, Bredas J-L 2008 Accounts. Chem. Res. 41 721Google Scholar

    [43]

    Liu C, Xu Y, Noh Y Y 2015 Mater. Today 18 79Google Scholar

    [44]

    Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F, Fert A 2010 Nat. Phys. 6 615Google Scholar

    [45]

    Bergenti I, Dediu V 2019 Nano Mater. Sci. 1 149Google Scholar

    [46]

    Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R, Seneor P 2014 MRS Bull. 39 602Google Scholar

    [47]

    Brede J, Wiesendanger R 2012 Phys. Rev. B 86 184423Google Scholar

    [48]

    Ding S, Tian Y, Li Y, Mi W, Dong H, Zhang X, Hu W, Zhu D 2017 ACS Appl. Mater. Inter. 9 15644Google Scholar

    [49]

    Ciudad D, Gobbi M, Kinane C J, Eich M, Moodera J S, Hueso L E 2014 Adv. Mater. 26 7561Google Scholar

    [50]

    Han X, Mi W, Wang X 2019 J. Mater. Chem. C 7 4079Google Scholar

    [51]

    Liang S, Yang H, Yang H, et al. 2016 Adv. Mater. 28 10204Google Scholar

    [52]

    Naber W J M, Faez S, van der Wiel W G 2007 J. Phys. D. Appl. Phys. 40 R205Google Scholar

    [53]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [54]

    Vardeny Z V 2010 Organic Spintronics (CRC Press) pp112, 140

    [55]

    Schmidt G, Molenkamp L W 2002 Semicond. Sci. Tech. 17 310Google Scholar

    [56]

    Köhler A, Bässler H 2015 Electronic Processes in Organic Semiconductors (Wiley-VCH) p117

    [57]

    Marta G 2016 Molecular Spintronics (Cham: Springer) pp7–9, 20–21, 32–36

    [58]

    Ji D Y, Li T, Liu J, Amirjalayer S, Zhong M Z, Zhang Z Y, Huang X H, Wei Z M, Dong H L, Hu W P, Fuchs H 2019 Nat. Commun. 10 1Google Scholar

    [59]

    Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H 2020 Nat. Mater. 19 491Google Scholar

    [60]

    Cohen M J, Coleman L B, Garito A F, Heeger A J 1974 Phys. Rev. B 10 1298Google Scholar

    [61]

    Berleb S, Brütting W 2002 Phys. Rev. Lett. 89 286601Google Scholar

    [62]

    Vázquez H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F, Kahn A 2004 Europhys. Lett. 65 802Google Scholar

    [63]

    Perrin M L, Verzijl C J O, Martin C A, Shaikh A J, Eelkema R, van Esch J H, van Ruitenbeek J M, Thijssen J M, van der Zant H S J, Dulić D 2013 Nat. Nanotechnol. 8 282Google Scholar

    [64]

    Atodiresei N, Brede J, Lazić P, Caciuc V, Hoffmann G, Wiesendanger R, Blügel S 2010 Phys. Rev. Lett. 105 066601Google Scholar

    [65]

    Kawahara S L, Lagoute J, Repain V, Chacon C, Girard Y, Rousset S, Smogunov A, Barreteau C 2012 Nano Lett. 12 4558Google Scholar

    [66]

    Shi S, Sun Z, Bedoya-Pinto A, Graziosi P, Li X, Liu X, Hueso L, Dediu V A, Luo Y, Fahlman M 2014 Adv. Funct. Mater. 24 4812Google Scholar

    [67]

    Iacovita C, Rastei M V, Heinrich B W, Brumme T, Kortus J, Limot L, Bucher J P 2008 Phys. Rev. Lett. 101 116602Google Scholar

    [68]

    Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazić P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M, Moodera J S 2013 Nature 493 509Google Scholar

    [69]

    Ding S S, Tian Y, Wang H L, Zhou Z, Mi W B, Ni Z J, Zou Y, Dong H L, Gao H J, Zhu D B, Hu W P 2018 ACS Nano 12 12657Google Scholar

    [70]

    Ding S S, Tian Y, Liu X, Zou Y, Dong H L, Mi W B, Hu W P 2021 Nano Res. 14 304Google Scholar

    [71]

    Sun D, Fang M, Xu X, Jiang L, Guo H, Wang Y, Yang W, Yin L, Snijders P C, Ward T Z, Gai Z, Zhang X G, Lee H N, Shen J 2014 Nat. Commun. 5 4396Google Scholar

    [72]

    Yang W, Shi Q, Miao T, Li Q, Cai P, Liu H, Lin H, Bai Y, Zhu Y, Yu Y, Deng L, Wang W, Yin L, Sun D, Zhang X G, Shen J 2019 Nat. Commun. 10 3877Google Scholar

    [73]

    Raman K V 2014 Appl. Phys. Rev. 1 031101Google Scholar

  • [1] Hu Ju-Gang, Jia Zhen-Yu, Li Shao-Chun. Electron transport property of epitaixial bilayer graphene on SiC substrate. Acta Physica Sinica, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [2] Zhang Yi-Wei, Song Heng-Bo, Li Xiao-Yan, Sun Li, Liu Xiao-Ying, Kou Zhao-Xia, Zhang Dong, Fei Hong-Yang, Zhao Zhi-Bin, Zhai Ya. Influence of Cr interlayer with different thickness on transition of magnetoresistance effect of Gd/FeCo thin films. Acta Physica Sinica, 2022, 71(21): 217501. doi: 10.7498/aps.71.20220472
    [3] Bao Li-Hong, Tao Ru-Yu, O. Tegus, Huang Ying-Kai, Leng Hua-Qian, Anne de Visser. Anisotropy study on thermionic emission and magnetoresistivity of single crystal CeB6. Acta Physica Sinica, 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [4] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [5] Yi Ding, Wu Zhen, Yang Liu, Dai Ying, Xie Shi-Jie. Spin-polarization of organic molecules at the ferromagnetic surface. Acta Physica Sinica, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [6] Jiang Li-Na, Zhang Yu-Bin, Dong Shun-Le. Effect of bipolarons on spin polarized transport in magnetic permeated sublayer of organic spin device. Acta Physica Sinica, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [7] He Li-Min, Ji Yu, Lu Yi, Wu Hong-Ye, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of layered perovskite manganites (La1-xEu x)4/3Sr5/3Mn2O7(x=0, 0.15). Acta Physica Sinica, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [8] Wang Wei, Zhou Wen-Zheng, Wei Shang-Jiang, Li Xiao-Juan, Chang Zhi-Gang, Lin Tie, Shang Li-Yan, Han Kui, Duan Jun-Xi, Tang Ning, Shen Bo, Chu Jun-Hao. Magneto-resistance for two-dimensional electron gas in GaN/AlxGa1-xN heterostructure. Acta Physica Sinica, 2012, 61(23): 237302. doi: 10.7498/aps.61.237302
    [9] Dou Zhao-Tao, Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Enlargement of current spin polarization in organic spintronic device. Acta Physica Sinica, 2012, 61(8): 088503. doi: 10.7498/aps.61.088503
    [10] Wang Hui, Hu Gui-Chao, Ren Jun-Feng. Effect of disturbance on spin polarized transport through an organic ferromagnetic device. Acta Physica Sinica, 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [11] Jiang Kuo. Mechanism of magnetoresistance impacted by Co doped in La0.8Sr0.2MnO3 ferromagnetic metallic. Acta Physica Sinica, 2010, 59(4): 2801-2807. doi: 10.7498/aps.59.2801
    [12] Qin Wei, Zhang Yu-Bin, Xie Shi-Jie. Study on the temperature effect of magnetoresistance in organic device Co/Alq3/La1-xSrxMnO3(LSMO). Acta Physica Sinica, 2010, 59(5): 3494-3498. doi: 10.7498/aps.59.3494
    [13] Ren Jun-Feng, Wang Yu-Mei, Yuan Xiao-Bo, Hu Gui-Chao. Magnetoresistance effect in an organic spin valve. Acta Physica Sinica, 2010, 59(9): 6580-6584. doi: 10.7498/aps.59.6580
    [14] Peng Xian-De, Zhu Tao, Wang Fang-Wei. High temperature annealing treatment on Co doped ZnO bulks. Acta Physica Sinica, 2009, 58(5): 3274-3279. doi: 10.7498/aps.58.3274
    [15] Xu Xiao-Yong, Qian Li-Jie, Hu Jing-Guo. Magnetoresistance induced by the stress fieldin ferromagnetic multilayer. Acta Physica Sinica, 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [16] Su Xi-Ping, Bao Jin, Yan Shu-Ke, Xu Xiao-Guang, Jiang Yong. Effect of dual-synthetic antiferromagnet structre on giant magnetoresistance in spin valves. Acta Physica Sinica, 2008, 57(4): 2509-2513. doi: 10.7498/aps.57.2509
    [17] Jiang Kuo, Li He-Fei, Ma Wen, Gong Sheng-Kai. Dependence of magnetoelectric properties of La0.8Ba0.2MnO3 on Mn valence of oxide precursors. Acta Physica Sinica, 2005, 54(9): 4374-4378. doi: 10.7498/aps.54.4374
    [18] Jiang Hong-Wei, Wang Ai-Ling, Zheng Wu. Anisotropic magnetoresistance effect in spin valve multilayers. Acta Physica Sinica, 2005, 54(5): 2338-2341. doi: 10.7498/aps.54.2338
    [19] Ren Jun-Feng, Fu Ji-Yong, Liu De-Sheng, Xie Shi-Jie. Diffusion theory of spin injection into organic polymers*. Acta Physica Sinica, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [20] Xiao Chun-Tao, Han Li-An, Xue De-Sheng, Zhao Jun-Hui, H.Kunkel, G.Williams. Magnetic and transport properties of perovskite La067Pb033MnO3. Acta Physica Sinica, 2003, 52(5): 1245-1249. doi: 10.7498/aps.52.1245
Metrics
  • Abstract views:  8594
  • PDF Downloads:  385
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2021
  • Accepted Date:  28 October 2021
  • Available Online:  26 January 2022
  • Published Online:  20 March 2022

/

返回文章
返回
Baidu
map