搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究

王建元 白健英 罗炳成 王拴虎 金克新 陈长乐

引用本文:
Citation:

BaTiO3/La0.67Sr0.33MnO3-复合薄膜的磁致电极化和磁介电特性研究

王建元, 白健英, 罗炳成, 王拴虎, 金克新, 陈长乐

Magneto-induced polarization enhancement and magneto-dielectric properties in oxygen deficient La0.67Sr0.33MnO3-/BaTiO3 composite film

Wang Jian-Yuan, Bai Jian-Ying, Luo Bing-Cheng, Wang Shuan-Hu, Jin Ke-Xin, Chen Chang-Le
PDF
导出引用
  • 采用脉冲激光沉积法制备了BaTiO3(BTO)与缺氧的铁磁绝缘态La0.67Sr0.33MnO3-(LSMO)构成的磁电复合薄膜,研究了20300 K温度区间内磁场对电极化特性和介电特性的影响.研究发现,施加磁场使得电滞回线的剩余极化强度和矫顽场均增大,其变化率峰值分别为111.9%和89.6%,峰值温度分别为40 K和60 K.异质结具有显著的磁介电效应,在测量温度区间内,磁场使得介电常数增大,介电损耗减小.在0.8 T场强下,介电常数的最大磁致变化率出现在60 K,达到了300%,而介电损耗也在此温度实现了最大变化,减小为零场时的50.9%.该磁电复合薄膜的磁致电极化和磁介电特性的极值均出现在LSMO层的磁电阻峰值温度附近,这说明磁场对电滞回线和介电参数的调制应该源自电荷相关的耦合作用.其可能的机理是磁场使得锰氧化物中的Mn离子局域磁矩趋于有序排列,并通过自旋-轨道耦合以及界面效应间接影响了BTO的电极化特性.研究结果对于多铁器件的开发和应用具有重要意义.
    Magnetoelectric composite film is an important type of multiferroic materials, which is usually composed of typical ferromagnetic and ferroelectric materials. For the ferroelectric layer, BaTiO3 (BTO) attracts much attention due to its lead-free characteristic. For the ferromagnetic layer, doped manganite (R1-xAxMnO3) has been a good candidate for designing the advanced multiferroic films. Multiple interactions among the freedom degrees of charge, orbital, spin and lattice inside the doped manganite bring many additional properties into the manganite based composite films. At present, most of researches of manganite/BTO focus on the stoichiometric oxygen ion in manganite. Considering the fact that the oxygen deficiency can remarkably adjust the properties of manganite itself and relevant heterostructure by the interface effect, abnormal magnetoelectric properties are expected in an oxygen deficient manganite/BTO composite film. In this work, a composite film composed of BTO and oxygen deficient La0.67Sr0.33MnO3- (LSMO) is deposited on LaAlO3 001 substrate by the pulsed laser deposition method, and the effects of magnetic field on the properties of polarization and dielectric in a temperature range of 20-300 K are investigated. The X-ray diffraction pattern reveals good epitaxial growth of this bilayer film. The upper LSMO film exhibits semiconductive characteristic (dR/dT 0) in a temperature range of 20-300 K. Magnetization curves indicate that the LSMO keeps ferromagnetic state without any magnetic phase transition in this temperature range. When applying a magnetic fields of 0.8 T, the resistance in LSMO is observed to decrease. The changing rate MR=|R0.8 T-R0 T|/R0 T decreases from 45.28% at 30 K to 0.15% at 300 K. This composite film exhibits remarkable temperature-dependent magneto-induced ferroelectric and dielectric change. It is found that the remanent polarization (Pr) and coercive electric field (Ec) are enhanced by the 0.8 T magnetic field. The maximum changing rates of Pr and Ec are 111.9% and 89.6% at the temperatures of 40 K and 60 K, respectively. The magnetic field enhances the dielectric constant , but suppresses the dielectric loss tan . The maximum changing rates of and tan both occur at 60 K with the values of 300% and 50.9%. The temperature at which appear the maximum magneto-induced relative changes of polarization and dielectric parameters is accordant with the temperature at which occurs the peak value of magnetoresistance, which indicates a charge-based coupling in this heterojunction. A potential mechanism is that the magnetic field promotes the degree of parallelism of local spin magnetic moment of Mn ion, and produces an indirect effect on BTO layer by the spin-obital coupling and interface effect. Our findings make the oxygen deficient LSMO/BTO heterojunction promising for the design of multiferroic devices.
      通信作者: 王建元, wangjy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51402240,51471134,11604265)和西北工业大学翱翔新星计划资助的课题.
      Corresponding author: Wang Jian-Yuan, wangjy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51402240, 51471134, 11604265) and the Ao Xiang Xin Xing Foundation in NWPU, China.
    [1]

    Li Q, Wang D H, Cao Q Q, Du Y W 2017 Chin. Phys.. 26 097502

    [2]

    Wang J Y, Luo B C, Wang S H, Xing H, Zhai W 2018 Mater. Lett. 212 151

    [3]

    Wang J Y, Liu G, Sando D, Nagarajan V, Seidel J 2017 Appl. Phys. Lett. 111 092902

    [4]

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 099701(in Chinese) [李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 099701]

    [5]

    Liu E H, Chen Z, Wen X L, Chen C L 2015 Acta Phys. Sin. 64 117701(in Chinese) [刘恩华, 陈钊, 温晓莉, 陈长乐 2015 64 117701]

    [6]

    He H C, Wang J, Zhou J P, Nan C W 2007 Adv. Funct. Mater. 17 1333

    [7]

    Geprgs S, Mannix D, Opel M 2013 Phys. Rev.. 88 054412

    [8]

    Zhou J P, He H C, Shi Z, Nan C W 2006 Appl. Phys. Lett. 88 013111

    [9]

    Chopdekar R V, Suzuki Y 2006 Appl. Phys. Lett. 89 182506

    [10]

    Deng C, Zhang Y, Ma J, Lin Y, Wen C W 2007 J. Appl. Phys. 102 074114

    [11]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [12]

    Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H, Barbier A 2013 Phys. Rev.. 88 121409

    [13]

    Liu J M, Wang K F 2005 Prog. Phys. 25 82(in Chinese) [刘俊明, 王克锋 2005 物理学进展 25 82]

    [14]

    Murugavel P, Padhan P, Prellier W 2004 Appl. Phys. Lett. 85 4992

    [15]

    Singh M P, Prellier W, Mechin L, Raveau B 2006 Appl. Phys. Lett. 88 012903

    [16]

    Lee Y P, Park S Y, Hyun Y H, Kim J B, Prokhorov V G, Komashko V A, Svetchnikov V L 2006 Phys. Rev.. 73 224413

    [17]

    Wang C C, He M, Yang F, Wen J, Liu G Z, Lu H B 2007 Appl. Phys. Lett. 90 192904

    [18]

    Li T X, Zhang M, Hua Z, Yan H 2001 Solid. State. Commun. 151 1659

    [19]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [20]

    Fiebig M 2005 J. Phys.. 38 R123

    [21]

    Thiele C, Dorr K, Bilani O, Rodel J, Schultz L 2007 Phys. Rev.. 75 054408

    [22]

    Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, van der Marel D, Ahn C H, Triscone J M 2009 Adv. Mater. 21 3470

  • [1]

    Li Q, Wang D H, Cao Q Q, Du Y W 2017 Chin. Phys.. 26 097502

    [2]

    Wang J Y, Luo B C, Wang S H, Xing H, Zhai W 2018 Mater. Lett. 212 151

    [3]

    Wang J Y, Liu G, Sando D, Nagarajan V, Seidel J 2017 Appl. Phys. Lett. 111 092902

    [4]

    Li Y C, Zhou H, Pan D F, Zhang H, Wan J G 2015 Acta Phys. Sin. 64 099701(in Chinese) [李永超, 周航, 潘丹峰, 张浩, 万建国 2015 64 099701]

    [5]

    Liu E H, Chen Z, Wen X L, Chen C L 2015 Acta Phys. Sin. 64 117701(in Chinese) [刘恩华, 陈钊, 温晓莉, 陈长乐 2015 64 117701]

    [6]

    He H C, Wang J, Zhou J P, Nan C W 2007 Adv. Funct. Mater. 17 1333

    [7]

    Geprgs S, Mannix D, Opel M 2013 Phys. Rev.. 88 054412

    [8]

    Zhou J P, He H C, Shi Z, Nan C W 2006 Appl. Phys. Lett. 88 013111

    [9]

    Chopdekar R V, Suzuki Y 2006 Appl. Phys. Lett. 89 182506

    [10]

    Deng C, Zhang Y, Ma J, Lin Y, Wen C W 2007 J. Appl. Phys. 102 074114

    [11]

    Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi R O, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter A, Mathur N D, Gaupp A, Abrudan R, Radu F, Barthlmy A, Bibes M 2011 Nat. Mater. 10 753

    [12]

    Jedrecy N, von Bardeleben H J, Badjeck V, Demaille D, Stanescu D, Magnan H, Barbier A 2013 Phys. Rev.. 88 121409

    [13]

    Liu J M, Wang K F 2005 Prog. Phys. 25 82(in Chinese) [刘俊明, 王克锋 2005 物理学进展 25 82]

    [14]

    Murugavel P, Padhan P, Prellier W 2004 Appl. Phys. Lett. 85 4992

    [15]

    Singh M P, Prellier W, Mechin L, Raveau B 2006 Appl. Phys. Lett. 88 012903

    [16]

    Lee Y P, Park S Y, Hyun Y H, Kim J B, Prokhorov V G, Komashko V A, Svetchnikov V L 2006 Phys. Rev.. 73 224413

    [17]

    Wang C C, He M, Yang F, Wen J, Liu G Z, Lu H B 2007 Appl. Phys. Lett. 90 192904

    [18]

    Li T X, Zhang M, Hua Z, Yan H 2001 Solid. State. Commun. 151 1659

    [19]

    Li T X, Zhang M, Yu F J, Hu Z, Li K S, Yu D B, Yan H 2012 J. Phys. D: Appl. Phys. 45 085002

    [20]

    Fiebig M 2005 J. Phys.. 38 R123

    [21]

    Thiele C, Dorr K, Bilani O, Rodel J, Schultz L 2007 Phys. Rev.. 75 054408

    [22]

    Molegraaf H J A, Hoffman J, Vaz C A F, Gariglio S, van der Marel D, Ahn C H, Triscone J M 2009 Adv. Mater. 21 3470

  • [1] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应.  , 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [2] 王哲, 许劼敏, 王文君, 李何轩, 邹优鸣, 于璐, 屈哲. 多铁材料MnSb2O6中自旋涨落的ESR研究.  , 2022, 71(1): 017501. doi: 10.7498/aps.71.20211465
    [3] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展.  , 2021, 70(15): 157501. doi: 10.7498/aps.70.20210097
    [4] 翟晓芳, 云宇, 孟德超, 崔璋璋, 黄浩亮, 王建林, 陆亚林. 铋层状氧化物单晶薄膜多铁性研究进展.  , 2018, 67(15): 157702. doi: 10.7498/aps.67.20181159
    [5] 陈顺生, 熊良斌, 杨昌平. Nd0.7Sr0.3MnO3陶瓷中界面陷阱态相关电阻转变行为.  , 2016, 65(8): 087302. doi: 10.7498/aps.65.087302
    [6] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响.  , 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] 宋桂林, 苏健, 张娜, 常方高. 多铁材料Bi1-xCaxFeO3的介电、铁磁特性和高温磁相变.  , 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [8] 陈顺生, 杨昌平, 阚芝兰, Medvedeva I V, Marchenkov S. 热压处理对Nd0.7Sr0.3MnO3陶瓷磁电输运影响.  , 2012, 61(18): 186202. doi: 10.7498/aps.61.186202
    [9] 陈顺生, 杨昌平, 肖海波, 徐玲芳, 马厂. Nd1-xSrxMnO3中掺杂浓度对电脉冲诱导电阻转变效应的影响.  , 2012, 61(14): 147301. doi: 10.7498/aps.61.147301
    [10] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究.  , 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究.  , 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [12] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量.  , 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [13] 朱晖文, 姜平, 王顺利, 毛凌峰, 唐为华. (La0.7Sr0.3MnO3 )m(BiFeO3)n 超晶格结构的导电机理.  , 2010, 59(8): 5710-5714. doi: 10.7498/aps.59.5710
    [14] 金克新, 赵省贵, 陈长乐. Cu掺杂La0.67Sr0.33CuxMn1-xO3薄膜的光诱导效应研究.  , 2009, 58(7): 4953-4957. doi: 10.7498/aps.58.4953
    [15] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究.  , 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [16] 仲崇贵, 蒋青, 方靖淮, 江学范, 罗礼进. 1-3型纳米多铁复合薄膜中电场诱导的磁化研究.  , 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [17] 张成国, 章晓中. La1-xCaxMnO3(x≤1/3)中Ca掺杂的团簇化及其稳定性.  , 2008, 57(11): 7126-7131. doi: 10.7498/aps.57.7126
    [18] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [19] 康保娟, 曹世勋, 王新燕, 李领伟, 黎文峰, 刘 芬, 曹桂新, 郁黎明, 敬 超, 张金仓. 混合场中 (Pr1-yNdy)2/3Sr1/3MnO3体系磁转变行为研究.  , 2005, 54(2): 902-906. doi: 10.7498/aps.54.902
    [20] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响.  , 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
计量
  • 文章访问数:  5976
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-12
  • 修回日期:  2017-11-19
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map