Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic

Zhang Yu Luo Xiu-Juan Cao Bei Chen Ming-Lai Liu Hui Xia Ai-Li Lan Fu-Yang

Citation:

Analysis of the redundancy of Fourier telescopy transmitter array and its redundancy-strehl ratio-target texture distribution characteristic

Zhang Yu, Luo Xiu-Juan, Cao Bei, Chen Ming-Lai, Liu Hui, Xia Ai-Li, Lan Fu-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The Fourier telescopy is a kind of active illumination imaging with high resolution by using multi-interfering fringes generated by the multi-beams from the large transmitter arrays. According to the imaging principle, the beams from one laser source are split and each beam is applied with a different tiny frequency shift so that the interfering fringes may moving across the target. The configuration of the beams changes so that they would generate fringes in different spatial frequencies and different directions. Recently, most of researches focused on the factors such as the baseline scale and data sampling efficiency that may affect the imaging quality. However, there are other two factors, i.e., the configuration of the transmitter and its redundancy, which need studying. In Fourier telescopy, if the direction and spatial frequency of the fringe patterns that are generated by the change of different baseline configurations match each other, the target surface information would be a crucial factor that affects the image quality.In the first part of this article, the practicability of zero redundancy of baseline is analyzed. The results show that the baseline cannot have zero redundancy due to the iteration algorithm. Then the minimum redundancy is analyzed and the minimum redundancy line is proposed. By using the Strehl ratio as the merit of the imaging quality, the concept of redundancy-strehl ratio-target texture distribution (RST) and calculation method are proposed. This method integrates the transmitter redundancy, target detail information and image quality together. The distribution of RST value on the frequency plane is compared with the minimum redundancy line. If the RST point is located on the horizontal side compared with the line, the target detail information on this baseline is mainly in the horizontal direction. On the other hand, if the RST point is located on the longitude side, the target information is mainly in the longitude direction. Therefore this new proposed method reveals the relationship between target spatial information and the baseline configuration. In this article T-shaped transmitter array is adopted, and the Fourier components are mainly distributed on the rectangle plane. According to this relationship and calculated RST value, the working transmitter may continuously rectify its scale and shifting patterns so that the spatial frequencies and directions of fringes may match the target Fourier components in time. In this article, three simulated images and two real images are tested by the proposed method, and the results show that the RST values and the distributions well reveale the relationship between the detailed information and the baseline configurations.Now the Fourier telescopy follows the procedure from laboratory setup to the real system research. Considering the convenience and cost of project realization, this method is helpful for analyzing the real system of the transmitter configuration and enhancing working efficiency.
      Corresponding author: Zhang Yu, yuzhang16@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505248).
    [1]

    Luo X J, Zhang Y, Gao C X, Ren J, Cao B, Liu H, Chen M L {2015 Acta Opt. Sin. 35 0314001 (in Chinese) [罗秀娟, 张羽, 高存孝, 任娟, 曹蓓, 刘辉, 陈明徕 2015 光学学报 35 0314001]

    [2]

    Zhang Y, Luo X J, Xia A L, Cao B, Cheng Z Y, Zeng Z H, Si Q D, Wang B F 2014 Acta Photon. Sin. 43 0311001 (in Chinese) [张羽, 罗秀娟, 夏爱利, 曹蓓, 程志远, 曾志红, 司庆丹, 王保峰 2014 光子学报 43 0311001]

    [3]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 64 054204]

    [4]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 62 164203]

    [5]

    Zhang Y, Yang C P, Guo J, Kang M L, Wu J {2011 High Power Laser and Particle Beams 23 571 (in Chinese) [张炎, 杨春平, 郭晶, 康美苓, 吴健 2011 强激光与粒子束 23 571]

    [6]

    Dong L, Liu X Y, Lin X D, Wei P F, Yu S H {2012 Acta Opt. Sin. 32 0201004 (in Chinese) [董磊, 刘欣悦, 林旭东, 卫沛锋, 于树海 2012 光学学报 32 0201004]

    [7]

    Zhao M B, He J, Fu Q {2012 Acta Opt. Sin. 32 0628002 (in Chinese) [赵明波, 何峻, 付强 2012 光学学报 32 0628002]

    [8]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 Opt. Soc. Am. 13 351

    [9]

    Arsac J {1955 Compt. Rend. Acad. Sci. 240 942

    [10]

    Cuellar L E, Stapp J, Cooper J 2005 Proc. SPIE 5896 58960D

    [11]

    Wang X W, Li Q, Wang Y G, Chen W, Hu X J {2009 J. National Univ. Defense Technol. 31 38 (in Chinese) [王小伟, 黎全, 王雁桂, 陈卫, 胡小景 2009 国防科技大学学报 31 38]

    [12]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 63 104203]

    [13]

    Cuellar L E, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [14]

    Moffet A T {1968 IEEE AP-16 172

  • [1]

    Luo X J, Zhang Y, Gao C X, Ren J, Cao B, Liu H, Chen M L {2015 Acta Opt. Sin. 35 0314001 (in Chinese) [罗秀娟, 张羽, 高存孝, 任娟, 曹蓓, 刘辉, 陈明徕 2015 光学学报 35 0314001]

    [2]

    Zhang Y, Luo X J, Xia A L, Cao B, Cheng Z Y, Zeng Z H, Si Q D, Wang B F 2014 Acta Photon. Sin. 43 0311001 (in Chinese) [张羽, 罗秀娟, 夏爱利, 曹蓓, 程志远, 曾志红, 司庆丹, 王保峰 2014 光子学报 43 0311001]

    [3]

    Cao B, Luo X J, Si Q D, Zeng Z H 2015 Acta Phys. Sin. 64 054204 (in Chinese) [曹蓓, 罗秀娟, 司庆丹, 曾志红 2015 64 054204]

    [4]

    Zhang W X, Xiang L B, Kong X X, Li Y, Wu Z, Zhou Z S 2013 Acta Phys. Sin. 62 164203 (in Chinese) [张文喜, 相里斌, 孔新新, 李扬, 伍州, 周志盛 2013 62 164203]

    [5]

    Zhang Y, Yang C P, Guo J, Kang M L, Wu J {2011 High Power Laser and Particle Beams 23 571 (in Chinese) [张炎, 杨春平, 郭晶, 康美苓, 吴健 2011 强激光与粒子束 23 571]

    [6]

    Dong L, Liu X Y, Lin X D, Wei P F, Yu S H {2012 Acta Opt. Sin. 32 0201004 (in Chinese) [董磊, 刘欣悦, 林旭东, 卫沛锋, 于树海 2012 光学学报 32 0201004]

    [7]

    Zhao M B, He J, Fu Q {2012 Acta Opt. Sin. 32 0628002 (in Chinese) [赵明波, 何峻, 付强 2012 光学学报 32 0628002]

    [8]

    Holmes R B, Ma S, Bhowmik A, Greninger C 1996 Opt. Soc. Am. 13 351

    [9]

    Arsac J {1955 Compt. Rend. Acad. Sci. 240 942

    [10]

    Cuellar L E, Stapp J, Cooper J 2005 Proc. SPIE 5896 58960D

    [11]

    Wang X W, Li Q, Wang Y G, Chen W, Hu X J {2009 J. National Univ. Defense Technol. 31 38 (in Chinese) [王小伟, 黎全, 王雁桂, 陈卫, 胡小景 2009 国防科技大学学报 31 38]

    [12]

    Si Q D, Luo X J, Zeng Z H 2014 Acta Phys. Sin. 63 104203 (in Chinese) [司庆丹, 罗秀娟, 曾志红 2014 63 104203]

    [13]

    Cuellar L E, Cooper J, Mathis J, Fairchild P 2008 Proc. SPIE 7094 70940G

    [14]

    Moffet A T {1968 IEEE AP-16 172

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Kong Mei-Mei, Xue Yin-Yan, Xu Chun-Sheng, Dong Yuan, Liu Yue, Pan Shi-Cheng, Zhao Rui. Design and analysis of biconvex liquid lens with circular hole plate electrode structure. Acta Physica Sinica, 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [3] Chen Xing-Yu, Zhou Xin, Bai Xing, Yu Zhan, Wang Yu-Jie, Li Xin-Jia, Liu Yang, Sun Ming-Ze. Equivalence analysis of Fourier ghost imaging and sinusoidal ghost imaging. Acta Physica Sinica, 2023, 72(14): 144202. doi: 10.7498/aps.72.20222317
    [4] Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao. Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm. Acta Physica Sinica, 2022, 71(7): 074201. doi: 10.7498/aps.71.20211978
    [5] Ning Xiao-Kun, Geng Tao. Propagation properties of circularly symmetric Airy beam modulated by spectral asymmetric envelope. Acta Physica Sinica, 2022, 71(10): 104201. doi: 10.7498/aps.71.20220019
    [6] Wang Zhi-Peng, Wang Bing-Zhong, Liu Jin-Pin, Wang Ren. Inverse design method of microscatterer array for realizing scattering field intensity shaping. Acta Physica Sinica, 2021, 70(1): 010202. doi: 10.7498/aps.70.20200825
    [7] Zhang Shu-He, Shao Meng, Zhang Sheng-Zhao, Zhou Jin-Hua. Light rays in Fourier domain. Acta Physica Sinica, 2019, 68(21): 214202. doi: 10.7498/aps.68.20190839
    [8] Dong Lei, Lu Zhen-Wu, Liu Xin-Yue, Li Zheng-Wei. Performance optimization of three down-sampling imaging strategies and their comparison with the conventional Fourier telescope. Acta Physica Sinica, 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [9] Zhang Lei-Lei, Tang Li-Jin, Zhang Mu-Yang, Liang Yan-Mei. Symmetric illumination in Fourier ptychography. Acta Physica Sinica, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [10] Cheng Zhi-Yuan, Ma Cai-Wen, Ma Qing. Theoretical research of influence of laser intensity fluctuation on imaging quality degradation of coherent field. Acta Physica Sinica, 2017, 66(24): 244202. doi: 10.7498/aps.66.244202
    [11] Yu Shu-Hai, Dong Lei, Liu Xin-Yue, Ling Jian-Yong. Analysis on reconstruction of virtual images of Fourier telescopy. Acta Physica Sinica, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [12] Cheng Zhi-Yuan, Ma Cai-Wen, Luo Xiu-Juan, Zhang Yu, Zhu Xiang-Ping, Xia Ai-Li. Improving coherent field imaging quality by suppressing the influence of transmitting aperture spacing error. Acta Physica Sinica, 2015, 64(12): 124203. doi: 10.7498/aps.64.124203
    [13] Liu Yong-Di, Li Hong, Zhang Bo, Zheng Qiong-Lin, You Xiao-Jie. Spectrum calculation of chaotic SPWM signals based on double fourier series. Acta Physica Sinica, 2014, 63(7): 070503. doi: 10.7498/aps.63.070503
    [14] Si Qing-Dan, Luo Xiu-Juan, Zeng Zhi-Hong. Analyses on limitations of coherent field imaging principle. Acta Physica Sinica, 2014, 63(10): 104203. doi: 10.7498/aps.63.104203
    [15] Pang Wu-Bin, Cen Zhao-Feng, Li Xiao-Tong, Qian Wei, Shang Hong-Bo, Xu Wei-Cai. The effect of polarization light on optical imaging system. Acta Physica Sinica, 2012, 61(23): 234202. doi: 10.7498/aps.61.234202
    [16] Liu Zheng, Wang Sheng-Qian, Huang Lin-Hai, Rao Chang-Hui. Analysis of comprehensive effects of piston error and sub-aperture aberrations on the image quality of sparse-optical-synthetic-aperture system. Acta Physica Sinica, 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [17] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for fiber Bragg gratings. Acta Physica Sinica, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [18] Huang Su-Juan, Wang Shuo-Zhong, Yu Ying-Jie. Computer generated holography based on Fourier transform using conjugate symmetric extension. Acta Physica Sinica, 2009, 58(2): 952-958. doi: 10.7498/aps.58.952
    [19] Li Ping, Su Jing-Qin, Ma Chi, Zhang Rui, Jing Feng. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot. Acta Physica Sinica, 2009, 58(9): 6210-6215. doi: 10.7498/aps.58.6210
    [20] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Xie Hong-Lan, Xiao Ti-Qiao. Effect of some factors on imaging quality of X-ray in-line outline imaging. Acta Physica Sinica, 2007, 56(8): 4556-4564. doi: 10.7498/aps.56.4556
Metrics
  • Abstract views:  5991
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2016
  • Accepted Date:  15 February 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map