-
Chaotic SPWM control has attracted much interests due to its effectiveness for EMI suppression in power converters. However, most researches focus on the simulation and experiment of power converter under chaotic SPWM control, which is lacking a quantitative method. Based on double Fourier series this paper provides a spectrum calculation method for multi-period SPWM or quasi-random SPWM signals firstly, and the related spectrum calculation and simulation for multi-period SPWM are given to verify the accuracy of the spectrum calculation method; then the calculation method is extended to the spectral analysis of chaotic SPWM signals. To observe the impact on the spectrum of chaotic SPWM signals generated by different mappings and in different variation ranges of carrier period, a spectrum comparison between the Tent and Chebyshev mappings is conducted, in which results indicate that the variation range of the carrier period and the selection of mappings have a great influence on spectrum distribution; in the long term, probability density distribution of chaotic mapping will certainly affect the spectrum, and in the short term the initial value of the mapping will also affect the spread spectrum distribution. In summary, the proposed spectrum calculation method in this paper provides a theoretical foundation for the spread spectrum principle of chaotic SPWM control and for the design reference in practical engineering application.
-
Keywords:
- quasi-random SPWM /
- double Fourier series /
- chaotic SPWM /
- spectrum calculation
[1] Chen G C 2007 PWM Inverter Technology and Application (BeiJing: China Power Press) pp18-33 (in Chinese)[陈国呈2007 PWM 逆变技术及应用(北京: 中国出版社) 第18–33 页]
[2] Grahame Holmes D, Lipo T A 2003 Pulse width modulation for power converters: principles and practice (Piscataway: IEEE Press) pp105-118
[3] Hossein G, Amir H, Azita A 2013 Chin. Phys. B 22 010503
[4] Hua G C, Lee F C 1995 IEEE Trans. Ind. Electro. 42 595
[5] Trzynadlowski A M, Blaabjerg F, Pedersenet J K 1994 IEEE Trans. Ind. Appl. 30 1166
[6] Li H, Li Z, Zhang B, Tang W K S, Halang W A 2009 IEEE IEEE Circ. Syst. Mag. 9 10
[7] Jia M M, Zhang G S, Niu H 2013 Acta Phys. Sin. 62 130503 (in Chinese) [贾美美, 张国山, 牛弘2013 62 130503]
[8] Li H, Li Z, Zhang B, Wang F L, Tan N L, Halang W A 2010 IEEE Trans. Electro. Compat. 52 1001
[9] Zhao H, Ma Y J, Liu S J, Gao S G, Zhong D 2011 Chin. Phys. B 20 120501
[10] Li G L, Li C Y, Chen X Y, Zhang X W 2013 Acta Phys. Sin. 62 210505 (in Chinese) [李冠林, 李春阳, 陈希有, 张效伟2013 62 210505]
[11] Li H, Li Z, Zhang B, Zheng T Q, Halang W A 2011 Int. J. Circ. Theor. Appl. 39 451
[12] Yang R, Zhang B, Qiu D Y 2008 Acta Phys. Sin. 57 1389 (in Chinese)[杨汝, 张波2008 57 1389]
[13] Yang R, Zhang B 2006 Acta Phys. Sin. 55 5667 (in Chinese)[杨汝, 张波2005 55 5667]
[14] Li H, Lin F, Li Z, You X J, Zheng T Q, Zhang B 2013 Int. J. Comput. Math. Electr. Electron. Eng. 32 750
[15] Yang L, Zhang B, Qiu D Y 2007 Diangong Jishu Xuebao/Transact 22 110 (in Chinese) [杨汝, 张波, 丘东元 2007 电工技术学报22 110]
[16] Bowes S R, Bird B M 1975 Proc. Inst. Electr. Eng. 122 507
[17] Li H, Liu Y D, Lv J H, Zheng T Q, Yu X H IEEE Trans. Ind. Electron. submitted
[18] Li H, Li Z, Lin F, Zhang B 2012 Int. J. Circ. Theor. Appl. Published online in Wiley Online Library
[19] Zhang H, Zhang T N, Shen J H, Li Y 2008 Control and Decision 23 857 (in Chinese) [张浩, 张铁男, 沈继红, 李阳2008 控制与决策23 857]
[20] Shi J 2008 Modern Electronics Technology 23 93 (in Chinese) [石军2008 现代电力电子技术23 93]
-
[1] Chen G C 2007 PWM Inverter Technology and Application (BeiJing: China Power Press) pp18-33 (in Chinese)[陈国呈2007 PWM 逆变技术及应用(北京: 中国出版社) 第18–33 页]
[2] Grahame Holmes D, Lipo T A 2003 Pulse width modulation for power converters: principles and practice (Piscataway: IEEE Press) pp105-118
[3] Hossein G, Amir H, Azita A 2013 Chin. Phys. B 22 010503
[4] Hua G C, Lee F C 1995 IEEE Trans. Ind. Electro. 42 595
[5] Trzynadlowski A M, Blaabjerg F, Pedersenet J K 1994 IEEE Trans. Ind. Appl. 30 1166
[6] Li H, Li Z, Zhang B, Tang W K S, Halang W A 2009 IEEE IEEE Circ. Syst. Mag. 9 10
[7] Jia M M, Zhang G S, Niu H 2013 Acta Phys. Sin. 62 130503 (in Chinese) [贾美美, 张国山, 牛弘2013 62 130503]
[8] Li H, Li Z, Zhang B, Wang F L, Tan N L, Halang W A 2010 IEEE Trans. Electro. Compat. 52 1001
[9] Zhao H, Ma Y J, Liu S J, Gao S G, Zhong D 2011 Chin. Phys. B 20 120501
[10] Li G L, Li C Y, Chen X Y, Zhang X W 2013 Acta Phys. Sin. 62 210505 (in Chinese) [李冠林, 李春阳, 陈希有, 张效伟2013 62 210505]
[11] Li H, Li Z, Zhang B, Zheng T Q, Halang W A 2011 Int. J. Circ. Theor. Appl. 39 451
[12] Yang R, Zhang B, Qiu D Y 2008 Acta Phys. Sin. 57 1389 (in Chinese)[杨汝, 张波2008 57 1389]
[13] Yang R, Zhang B 2006 Acta Phys. Sin. 55 5667 (in Chinese)[杨汝, 张波2005 55 5667]
[14] Li H, Lin F, Li Z, You X J, Zheng T Q, Zhang B 2013 Int. J. Comput. Math. Electr. Electron. Eng. 32 750
[15] Yang L, Zhang B, Qiu D Y 2007 Diangong Jishu Xuebao/Transact 22 110 (in Chinese) [杨汝, 张波, 丘东元 2007 电工技术学报22 110]
[16] Bowes S R, Bird B M 1975 Proc. Inst. Electr. Eng. 122 507
[17] Li H, Liu Y D, Lv J H, Zheng T Q, Yu X H IEEE Trans. Ind. Electron. submitted
[18] Li H, Li Z, Lin F, Zhang B 2012 Int. J. Circ. Theor. Appl. Published online in Wiley Online Library
[19] Zhang H, Zhang T N, Shen J H, Li Y 2008 Control and Decision 23 857 (in Chinese) [张浩, 张铁男, 沈继红, 李阳2008 控制与决策23 857]
[20] Shi J 2008 Modern Electronics Technology 23 93 (in Chinese) [石军2008 现代电力电子技术23 93]
Catalog
Metrics
- Abstract views: 7466
- PDF Downloads: 1094
- Cited By: 0